Людмила Микешина - Философские идеи Людвига Витгенштейна

Тут можно читать онлайн Людмила Микешина - Философские идеи Людвига Витгенштейна - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, год 1996. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Философские идеи Людвига Витгенштейна
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    1996
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Людмила Микешина - Философские идеи Людвига Витгенштейна краткое содержание

Философские идеи Людвига Витгенштейна - описание и краткое содержание, автор Людмила Микешина, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Вниманию читателей предлагается первый в отечественной литературе сборник статей, посвященных философским идеям одного из выдающихся философов XX века Людвига Витгенштейна (1889-1951). В сборнике участвуют известные исследователи аналитической философии и наследия Витгенштейна. Отражены различные аспекты и эволюция творчества философа: "изобразительная" концепция языка, представленная в "Логико-философском трактате", идея и метод "языковых игр", а также концепции "правил", "достоверности" и др., разработанные в трудах "позднего" Витгенштейна. В сборнике отражены также мысли и соображения, сформулированные на коллоквиуме "Людвиг Витгенштейн и философская мысль XX века" (Минск, 1990). Работа свидетельствует о формировании сообщества отечественных исследователей, готовых объединить усилия в изучении сложной, интересной и в высшей степени влиятельной концепции в мировой философской мысли XX века.

Философские идеи Людвига Витгенштейна - читать онлайн бесплатно полную версию (весь текст целиком)

Философские идеи Людвига Витгенштейна - читать книгу онлайн бесплатно, автор Людмила Микешина
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В подобном возражении самым интересным является его кажущаяся очевидность - при том, что опровергающие его факты общеизвестны. Например, с точки зрения античной математики наша современная арифметическая практика сплошь ошибочна, даже абсурдна. Посмотрим на выражения типа "3 -1", "(3) 1/2", "(3) -2", "3 - 5" и т.д. Математика в своем историческом развитии превратила эти запрещенные выражения сначала в "допустимые частные случаи", а потом вообще создала совершенно новую практику. В "числах самих по себе" в "арифметике самой по себе" все это вовсе не содержалось. Можно представить себе, что развитие математической мысли пошло бы по другому пути, и тогда у нас были бы совсем другие практики следования арифметическим правилам.

Правило, взятое само по себе, не детерминирует своих применений. Это может показаться очевидным в случае таких, например, правил, как правила защиты диссертаций, когда любой соискатель, ознакомившись с инструкцией, тут же начинает узнавать у людей, прошедших эту процедуру, как принято следовать данной инструкции. Однако считается, что математическое правило по крайней мере должно быть сформулировано так, чтобы полностью определять свои применения, т.е. то, как надо ему следовать. А Витгенштейн в § 189 "Философских исследований" предлагает подумать над тем, как употребляется выражение "быть определяемым алгебраической формулой". Может быть, это означает, что люди обучены употреблять данную формулу так, что она определяет то, что они должны писать, следуя ей как правилу. И только в контексте уже определенного употребления можно отличать формулы, которые полностью определяют (нечто), от тех, которые определяют не полностью. Сам Витгенштейн в этом параграфе рассматривает пример с формулой y = x 2. Казалось бы, опять он говорит нелепости, недопустимые для человека, знакомого с математикой хотя бы в школьном объеме. И тем не менее опять прав Витгенштейн, а наше недоумение объясняется тем, что мы не видим того, что у нас перед глазами. Не видим потому, что глаза наши закрыты шорами представлений о математике как особой, исключительной, суперстрогой и точной, имеющей дело с особыми, эфирными математическими объектами, - словом, стоящей выше , чем все прочие виды человеческой деятельности.

В том, что говорит Витгенштейн, еще нет в эксплицитном виде какой-то новой философской концепции математики, - но его замечания вызывают "смену аспекта видения", позволяют увидеть привычное в новом свете, избавившись от дихотомии "высшего" и "низшего", профанного и точного знания. И вследствие этого они несут в себе большой энергетический заряд, который рано или поздно выльется в появление новой философии математики, сильно отличающейся от того, что мы имеем сейчас под этим названием, и которая заставит по-другому взглянуть и на историю математики.

Что же касается формулы y = x 2, то надо только представить себе, что вместо x подставляются иррациональные числа, например  или е. И тогда разные люди, обученные разным правилам получения приближений этих чисел (например, сверху или снизу), с разными представлениями о том, до какого знака надо продолжать вычисления в соответствии с формулой y = x 2(в связи с разными задачами), будут получать отличающиеся результаты. Это и показывает, что данная формула однозначно определяет, что надо делать согласно ей, только в поле определенных видов применения.

Но является ли подобная недоопределенность правил принципиальной? Может быть, она вполне устранима, и для этого нужна как раз формализация и аксиоматизация, которая выявит все предпосылки, в том числе область применения, и тем самым сделает системы правил такими, какими они и должны быть? Ответ, согласующийся с духом витгенштейновской философии, должен быть таким: да, такая недоопределенность принципиальна. Даже формализованные системы опираются, в конце концов, на представление о том, что все люди одинаково отождествляют и различают символы, с помощью которых они сформулированы, а это тоже означает апелляцию к сложившейся практике. Однако более существенно следующее. Если данная формализованная система останется только памятником эпохи веры в необходимость формализации и аксиоматизации, если она не будет иметь никаких применений (что случается с формализованными системами), если она не будет этапом на пути развития данной теории, тогда можно будет сказать, что ее правила детерминируют все возможные применения - коль скоро реально применений нет. Но если такая система будет "жить" в каких-то употреблениях, развиваться, претерпевать эволюцию, - тогда вполне возможны новые неожиданные применения, никак не детерминированные самой системой при ее создании.

Правда, можно было бы сказать, что и тут правила будут теми же самыми и применения будут те же самые. Например, Бейкер и Хакер, возражая Крипке, говорят о том, что правило просто показывает, что во всех случаях надо делать вот это, и всегда то же самое, что, по их мнению, снимает крипкевскую проблему "плюса" и "квуса" [71] Baker G.R., Hacker P.M.S. Op. cit. . Возражение, не соответствующее духу витгенштейновской философии. Кто, в самом деле, будет решать, когда возникает новая практика следования правилу, делается ли то же самое или нет? Или "то же самое" - это, по их мнению, некая абстрактная сущность, не зависящая от конкретных применений? Например, многие математики убеждены, что у нас та же самая арифметика, что и у античных математиков. А с точки зрения последних, скорее всего, дело выглядело бы так, что математика XX в. вопиюще нарушает арифметические правила, применяя их к отрицательным, комплексным и прочим числам.

Размышления Витгенштейна о следовании правилу тесно связаны с позицией, занятой им в связи с проблемой противоречий в основаниях математики. Его рассуждения показывают, почему бессмыслен страх перед скрытыми противоречиями в системе правил. В правилах самих по себе ничего не заложено, в том числе в них не "сидит" и это неведомое нам скрытое противоречие. Все определяется тем, как мы следуем системе правил. Так в математическом анализе используются непредикативные определения, но это не ведет к противоречиям. Как отметил А.Тарский, обычный язык и обычная двузначная логика образуют противоречивую систему. Однако это не приводит к краху любых рассуждений, потому что мы не употребляем в выводах и рассуждениях парадоксальные предложения. У нас нет практики осуществления выводов типа "я лгу, что я лгу, следовательно, 2 х 2 равно сколько угодно". Потому и в теории множеств можно спокойно работать, пока принятые в ней способы рассуждений и построений понятий не приведут к противоречиям. Если же возникнут новые применения правил системы, новые типы и области рассуждений, ведущие к противоречию, тогда и надо будет пересмотреть - либо систему правил, либо одно из применений, - чтобы устранить противоречие. Идея же заранее устранить все возможности появления противоречий столь же утопична, как и попытка построить такую тюрьму, в которой исключались бы все возможности для побега заключенных (пример самого Витгенштейна).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Людмила Микешина читать все книги автора по порядку

Людмила Микешина - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Философские идеи Людвига Витгенштейна отзывы


Отзывы читателей о книге Философские идеи Людвига Витгенштейна, автор: Людмила Микешина. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x