П Гайденко - История греческой философии в её связи с наукой
- Название:История греческой философии в её связи с наукой
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
П Гайденко - История греческой философии в её связи с наукой краткое содержание
История греческой философии в её связи с наукой - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Однако математика Демокрита покоилась на некоторой наглядной механической модели, которая могла оказаться плодотворной не столько для строго математической мысли, сколько для построения некоторых вспомогательных механических процедур, к которым стали прибегать математики эпохи эллинизма, в частности Архимед. Нужно сказать, однако, что Архимед всегда проводил четкую границу между этими своими механическими приемами и собственно математическими доказательствами. "...Кое-что из того, что ранее было мною усмотрено при помощи механики, позднее было также доказано и геометрически, так как рассмотрение при помощи этого (механического. П.Г.) метода еще не является доказательством; однако получить с помощью этого метода некоторое предварительное представление об исследуемом, а затем найти и само доказательство гораздо удобнее, чем производить изыскания, ничего не зная. Поэтому и относительно тех теорем о конусе и пирамиде, для которых Евдокс первый нашел доказательство, а именно, что всякий конус составляет третью часть цилиндра, а пирамида - третью часть призмы с тем же самым основанием и равной высотой, немалую долю заслуги я уделю и Демокриту, который первый высказал это положение относительно упомянутых фигур, хотя и без доказательства"55.
Действительно, атомизм открывает простор для развития именно механических методов, но методов, не смыкающихся со строго математическим рассмотрением56, а потому, как говорит Архимед, "лишенных доказательства". Однако тот же Архимед в своей работе "О шаре и цилиндре" говорит по поводу теорем о пирамиде и конусе следующее: "Свойства эти остались неизвестными многим жившим до Евдокса знаменитым геометрам и ни одному из них не пришли на ум"57. Приведенная нами выше ссылка на Демокрита дана Архимедом в сочинении "Эфод"58, найденном И. Гейбергом в начале ХХ в. В чем причина такого несоответствия высказываний Архимеда? Можно допустить, что "Эфод" написан Архимедом позднее, чем сочинение "О шаре и цилиндре", т.е. в период, когда Архимед еще не был знаком с методами Демокрита. Однако некоторые исследователи не согласны с таким допущением59.
Не вполне ясно также, в чем состоял тот "механический метод" Демокрита, о котором говорит Архимед в "Эфоде". Сам Архимед не сообщает об этом; но естественно, казалось бы, предположить, что Демокрит здесь прибегал к приемам суммирования. Однако немецкий историк математики Э. Хоппе, обращая внимание на употребление Архимедом выражения katanohJ¤nai, утверждает, что Архимед не мог бы его употребить, если бы Демокрит пользовался приемами суммирования. Хоппе полагает, что скорее Демокрит в качестве физика определил объем конуса и пирамиды экспериментально, путем взвешивания самих тел или соответствующих им объемов жидкостей60. Такое допущение вполне объясняло бы, почему Архимед считал, что положения Демокрита о конусе и цилиндре не сопровождались доказательствами, а потому носили не строго математический, но механический характер. Однако за неимением других подтверждений точки зрения Хоппе, кроме филологического анализа глагола katanoЪw, трудно считать решенным вопрос о характере тех механических методов Демокрита, о которых сообщает Архимед.
Но если Демокрит и прибегал именно к методу суммирования, то его способ суммирования, как показал В.П. Зубов, должен был существенно отличаться от того способа, каким пользовался в "Эфоде" Архимед. "Уже было сказано, пишет Зубов, - что для Демокрита характерным являлось разложение величин на элементы того же порядка (тел - на тела) в отличие от платоновско-пифагорейских математиков, разлагавших тела на плоскости, плоскости - на линии, линии - на точки. В "Эфоде" Архимед пользуется не первым, а вторым приемом. Метод его основан на принципе: то, что справедливо в отношении каждой пары элементов, применимо и в отношении всех элементов одной совокупности ко всем элементам другой совокупности "каждый к каждому, как все ко всем". Если А:а = В:b = С:с = = D:d и т.д., то (А + В + С + Д...):(a + b + c + d...) = А:а. Рассматривая площади как совокупности всех линий, объемы - как совокупности всех площадей, Архимед выводит ряд квадратур и кубатур, например, определяет объем части цилиндра, вписанного в прямую призму с квадратным основанием, которая отсекается плоскостью, проходящей через ребро верхнего основания призмы и центр нижнего основания.
Отличительной чертой такого доказательства является переход от соотношения между величинами n-го измерения к соотношению между величинами n + 1 измерения. Это совсем не то, что построение тел из конечного числа "неделимых тел", пусть даже число этих "неделимых" очень велико и они практически не отличаются от точек"61.
Зубов, таким образом, показал, что "суммирование", к которому прибегает Архимед, имеет в качестве своей предпосылки математические "неделимые", а не физические атомы Демокрита, ибо, согласно исходным принципам Демокрита, тела слагаются из неделимых тел, т.е. величин того же измерения.
Существенно иное истолкование получает проблема неделимых в эпоху Возрождения, в частности у Галилея. Здесь в известном смысле теряет свое значение характерное для античной науки различие математических и физических неделимых, "точек" и "линий", с одной стороны, и неделимых тел, "атомов", - с другой. Но это происходит благодаря радикальному изменению исходных методологических принципов естествознания, пересмотру тех понятий, которые были унаследованы от античной науки. Поэтому то, что было сделано в эпоху Галилея, нельзя проецировать на греческую науку, что, по-видимому, сделал С.Я. Лурье в своей работе "Теория бесконечно малых у древних атомистов" (М.; Л., 1935).
Наука и философия нового времени стро·т совершенно новую модель связи математики с физикой, и в свете этой новой модели античные программы, оттесненные на задний план в средневековой науке, неожиданно приобретают совершенно новое звучание: мы имеем в виду математическую программу пифагорейцев и платоников, а также физическую программу Демокрита.
Чтобы избежать модернизации античной науки, в том числе и учения Демокрита, необходимо, по-видимому, рассматривать его в условиях теоретической ситуации того времени - как мыслителя, решающего вопросы, поставленные его предшественниками и современниками, а не нами и не нашей современной теоретической ситуацией. То же самое имеет силу и по отношению к другим теоретическим позициям и научным школам.
Если не упускать из поля зрения, что ответ Демокрита был решением задач, условия которых формулировались прежде всего двумя предшествующими философскими направлениями - пифагорейцами и элеатами, то атомистическая теория предстанет в исторической перспективе как физическая интерпретация пифагорейского учения о "единицах", неделимых "монадах". В пользу этого предположения говорит и свидетельство о том, что Демокрит, помимо того, что он был учеником Левкиппа (а сам Левкипп - учеником Зенона)62, учился также у кого-то из пифагорейцев63. Мы не можем поэтому согласиться с утверждением Э. Франка, что пифагорейский тезис "все есть число" (а соответственно и пифагорейское понятие неделимой "монады") представляет собой заимствование у Демокрита. "...Легко видеть, - пишет Франк, что такие положения, как "все есть число" или "единственно объективное познание есть математика", непосредственно вытекают из воззрения атомизма, и только из него могут быть поняты. Ибо если все есть атом или совокупность атомов, тогда, конечно, все есть только число"64. При этом Франк ссылается на Аристотеля.
Читать дальшеИнтервал:
Закладка: