В Степин - Новая философская энциклопедия. Том второй Е—M

Тут можно читать онлайн В Степин - Новая философская энциклопедия. Том второй Е—M - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство МЫСЛЬ, год 2010. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Новая философская энциклопедия. Том второй Е—M
  • Автор:
  • Жанр:
  • Издательство:
    МЫСЛЬ
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-2-244-01115-9
  • Рейтинг:
    4.11/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

В Степин - Новая философская энциклопедия. Том второй Е—M краткое содержание

Новая философская энциклопедия. Том второй Е—M - описание и краткое содержание, автор В Степин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Новая философская энциклопедия дает обзор мировой философии во всем богатстве ее основных понятий, произведений, исторических традиций, школ, имен, обобщает достижения российских и зарубежных философских исследований за последние десятилетия, является самым полным в отечественной литературе сводом философских знаний на рубеже тысячелетий. Энциклопедия содержит около пяти тысяч статей, авторами которых являются более четырехсот известных ученых - специалистов в различных областях философии.

При подготовке данного издания внесены некоторые уточнения и дополнения. В частности, в первом томе помещена статья, посвященная 80-летию Института философии РАН в четвертом - именной указатель по всем томам.

Новая философская энциклопедия. Том второй Е—M - читать онлайн бесплатно полную версию (весь текст целиком)

Новая философская энциклопедия. Том второй Е—M - читать книгу онлайн бесплатно, автор В Степин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

423

ЛОГИКА ПРЕДИКАТОВ значений правильно построенных выражений ее языка (т. е. термов и формул) в рамках выбранных модели и распределения ф значений предметных переменных. Значениями термов в при <���р являются объекты из U. Значения предметных констант и переменных уже определены посредством функции I и <���р соответственно. Значением сложноготермаФО,, t,, ...,1п)являетсятотобъектизи, который представляет собой результат применения операции 1(Ф) к n-ке значений (в этой же модели и при этом же распределении) термов t,, tj,..., tn. Пусть, напр., в качестве универсума выбрано множество натуральных чисел, предметно-функциональная константа f проинтерпретирована как операция сложения, а предметные константы а и b как числа 2 и 3. Тогда значением терма f(a,b) в соответствующей модели будет результат сложения 2 и 3, т. е. число 5. Формулы языка логики предикатов принимают в модели при распределении <���р ровно одно из двух значений — И или Л. Атомарная формула вида П(т,, t^..., tn) принимает — при трактовке предикаторных констант как знаков экстенсионально понимаемых свойств и отношений — значение И, если и только если n-ка значений (в данной модели и при данном распределении <���р) термов t,, t^,..., tn действительно находится в отношении ЦП), когда п > 1, или обладает свойством 1(П), когда п = 1. Если же предикаторные константы интерпретируются как знаки предметно-истинностных функций, то n(t,, tj,..., tn) примет значение И в том и только в том случае, когда результат применения подобной функции 1(П) к указанной n-ке объектов даст И. В упомянутой в предыдущем примере конкретной модели и при интерпретации пре- дикаторной константы R как отношения «меньше» формула R(a,b) примет значение И, т. к. 2 действительно меньше 3, а формула R(b,a) — значение Л, посколысу 3 не находится в указанном отношении к 2. Условия истинности и ложности формул, главными знаками которых являются пропозициональные связки, сохраняются (с необходимой привязкой к и <���р) такими же, как в классической логике высказываний. Семантические определения для кванторных формул таковы: V аА (соответственно 3 аА) истинна в модели при распределении <���р, если и только если ее подкванторная часть А принимает значение И в той же модели при любом (при некотором) распределении у значений предметных переменных, отличающемся от ф не более, чем значением gl Другими словами: формула V аА истинна в том случае, когда А оказывается истинной, какой бы объект из U мы ни приписали в качестве значения переменной а (сохранив при этом значения остальных переменных), а В аА истинна, если в универсуме найдется такой объект, что при сопоставлении его в качестве значения переменной а формула А оказывается истинной. Завершающим этапом в построении логики предикатов является введение понятии закона этой теории (общезначимой формулы) и различных логических отношений между формулами. Наиболее важным из них является отношение логического следования (см. Следование логическое), поскольку его наличие составляет критерий корректности дедуктивных умо- Говорят, что формула значима (истинна) в модели при некотором распределении <���р значений предметных переменных, если и только если данная формула принимает значение И в этой модели при этом распределении. Формулу называют значимой (истинной) в модели , если она значима в ней при любом распределении элементов U предметным переменным. Формула называется общезначимой на множестве U (U-общезначимой), если она значима в каждой модели с универсумом U. Формула называется универсально общезначимой (или просто — общезначимой), если она общезначима на любом (непустом) множестве. Факт общезначимости формулы А обычно выражается в метаязыке следующей записью: |==А. Общезначимые формулы — это законы логики предикатов, поскольку они истинны при любых допустимых в данной теории интерпретациях нелогических символов. Конкретизация понятия логического следования в логике предикатов осуществляется следующим образом: из множества формул Г логически следует формула В (Г |= В), если и только если в любой модели и при любом распределении значений предметных переменных, при которых истинна каждая формула из Г, формула В также примет значение «истина». В сформулированном выше семантическом варианте правила установления значений формул имеют отчетливо выраженную объектную направленность: они предполагают, что при решении вопроса об истинности или ложности происходит соотнесение выражений языка с нелингвистическими сущностями (индивидами, свойствами, отношениями, функциями, связанными с некоторой предметной областью). Альтернативой объектной интерпретации формул языка логики предикатов является т. н. подстановочная интерпретация. Смысл ее состоит в формулировке таких критериев истинности и ложности предложений языка, которые бы не предполагали соотнесения последних с внеязыковой действительностью, а опирались бы только на информацию о значениях элементарных, атомарных предложений (в подобном стиле обычно строится логика высказываний, где при установлении значений формул необходимо лишь, чтобы каким-то — неважно каким—образом былоосуществленораспределение значений для пропозициональных переменных). Т. о., при подстановочной интерпретации мы, скорее, имеем дело не с обычной трактовкой истины как соответствия предложений действительности, а с тем, что иногда называют «истинностью в теории», где теория понимается, по существу, в синтаксическом аспекте — как дедуктивно замкнутое множество предложений языка. Технически «подстановочная» семантика логики предикатов может быть сформулирована следующим образом. Значения здесь естественно сопоставлять лишь замкнутым формулам, поскольку именно эти формулы представляют собой предложения теории и могут оцениваться как истинные или ложные в ней. Задается функция оценки V, отображающая множество замкнутых формул вида n(t(, t^..., tn) на множество {И J1} (содержательно — Ураспределяет значения для элементарных предложений языка теории). Правила установления значений замкнутых формул видов -А, Ал В, A v В, А=> В — стандартные. Формула V аА (соответственно ЗаА) примет значение И при оценке V, если и только если данное значение при V имеет любой (соответственно по крайней мере один) результат подстановки в формулу А замкнутого терма t вместо всех свободных вхождений переменной а (содержательно — общее (частное) предложение истинно в теории, если и только если соответствующее бескванторное утверждение справедливо дли любого (хотя бы для одного) сингулярного термина, принадлежащего словарю данной теории). Класс замкнутых формул, принимающих при оценке V значение И, как раз и представляет собой некоторую теорию в описанном выше

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


В Степин читать все книги автора по порядку

В Степин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Новая философская энциклопедия. Том второй Е—M отзывы


Отзывы читателей о книге Новая философская энциклопедия. Том второй Е—M, автор: В Степин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x