Л. Науменко - Монизм как принцип диалектической логики
- Название:Монизм как принцип диалектической логики
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1968
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Л. Науменко - Монизм как принцип диалектической логики краткое содержание
Монизм как принцип диалектической логики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Категория вещи, все категории вещественно-расчлененного эмпирического мира и человеческого опыта имеют качественную природу. Поэтому высказывание математики о мире качественно конечных вещей представляло бы собой попытку говорить на чужом для нее языке. Принцип монизма, будучи принципом рационального познания, обязывает рассматривать исследуемые объекты как проявления присущего им внутреннего единства и отвлекаться от связей, гетерогенных данной области. Поэтому рациональное познание количественных определений заведомо предполагает отвлечение от качественно-вещественных категорий опыта.
Но это вовсе не значит, что математика вообще отвлекается от реального мира, что она – лишь область спонтанного творчества разума. Математические истины столь же объективны, сколь и всякие другие научные истины, но для них вовсе не обязателен эмпирический характер. Количественная определенность вещей в известных пределах безразлична к их качественной природе. В рамках этого безразличия и подвизается математика.
Предметы непосредственного опыта, эмпирического знания имеют конечный, качественно-количественный характер. Границы количественной определенности вещи положены качеством этой вещи, внешним по отношению к количеству способом. В этом случае количественное определение вещи не есть самоопределение пространства, не есть его саморазличение, но полагание качественной границы пространства .
Естественно, что математика стремится постичь пространственные определения как положенные не внешним для ее предмета способом, а внутренним. Логическое есть постижение определенного, исследование природы предела. В математике исследуются внутренние пределы количественной области, внутренние для количества определения. Поэтому то, что является определенным для чувства, вовсе не является таковым для математического разума.
Восприятие рассматривает количественную определенность вещи как характеристику ее качества, математическое познание – как определенность количества самого по себе. Для восприятия пространственно определенная вещь есть вещь, ограниченная другими пространственными вещами, есть пространство, разграниченное качествами; для математика пространственно определенное есть то, что положено отношениями пространственных же категорий. В опыте пространственные категории суть определения вещей, в геометрии они – определения самого пространства.
Сказанное представляет собой соображения логического или методологического порядка, которые, по сути дела, опираются на определенную онтологию. Устранение аргументации эмпирического характера вовсе не является следствием особой щепетильности математики в вопросах логики. Соединение собственно математических и эмпирических понятий несостоятельно не только потому, что оно эклектично, но прежде всего потому, что эмпирические категории отражают совсем не ту сторону объективной реальности, которая составляет предмет математики.
Объективны не только конечные, но и бесконечные определения действительности. Сферу эмпирического знания о пространстве составляет мир конечных вещей, т.е. качественно разграниченного пространства, дефинированного физической определенностью конечных вещей. Однако пространство само по себе безразлично к этой дефиниции, о чем свидетельствует изменчивость пространственных границ вещей. Само же пространство не меняется.
Пространственные определения дефинируют лишь сами вещи, качественно-количественную конечную сферу, но не пространство, как таковое. Поэтому геометрия и отвлекается от этой дефиниции и полагает свою. Она отвлекается от зависимости геометрических отношений от физического субстрата вещей, но только потому, что пространство есть атрибут материи, субстанции, а не отдельной конечной вещи, которая и составляет предмет опыта. Поэтому геометрию можно было бы определить как физику не отдельных конечных объектов, а их целых систем, а количество – как качество системы, не сводимое к свойствам элемента. Так, например, в общей теории относительности связываются воедино пространственные и гравитационные характеристики системы, нащупывается предел безразличия геометрии к физике.
Каким способом математика получает свой абстрактный предмет?
Самый общий ответ на этот вопрос дал еще Аристотель, который рассматривал «математические объекты» как абстракции, отвлечения от известных свойств реальных вещей, их идеализации, упрощения и т.п. Этот взгляд в различных вариантах повторяется и по сей день.
Но правомерен ли такой подход к науке? Можно ли рассматривать геометрию как науку об абстракциях или о воображаемых с помощью абстракции вещах? Нам думается, что нет. Ведь в этом случае геометрия была бы лишь ветвью логики или психологии. Проблему реальности, в частности проблему предмета математики, аристотелевская теория абстракции не разрешает. Для ее разрешения должны быть привлечены категории, выработанные марксистской философией.
2. Проблема реальности в математике
В соответствии с принципом гомогенности все математические понятия следует рассматривать лишь в их взаимных отношениях. Вместе с тем само математическое познание предполагает, что существуют не только определенные отношения в гомогенной области предмета математики, но и между ней и остальными сторонами объективного мира. Это отношение определяется как безразличие математичес к их зависимостей к содержанию, качественной определенности предметов и явлений, составляющее необходимую и самую фундаментальную предпосылку математического познания.
Математика исследует «рациональные связи» (Энгельс) между математическими величинами. С формальной стороны, в соответствии с принципом гомогенности, характер этих связей был рассмотрен выше. Что же касается их содержательной интерпретации, то этот вопрос упирается в более общую и фундаментальную проблему – проблему реальности в математике, в анализ тех условий, при которых пространственные формы и количественные отношения мира могут быть рассмотрены как безразличные по отношению к содержанию.
В науках, исследующих реальные объекты и их свойства, определенность свойства рассматривается в зависимости от определенной природы этих объектов и реальных условий, в которых они пребывают. Причем под объектом и его свойством здесь понимаются совершенно реальные вещи и процессы, существующие вне и независимо от нашего познания.
Для того чтобы познать какое-либо определенное свойство объекта, необходимо обратиться к самому объекту, внешней вещи, в которой это свойство фиксировано. Наличие этих объектов и свойств мы устанавливаем опытным путем. Опытным же путем мы устанавливаем, что данное свойство (форма, размер и т.п.) того или иного объекта является продуктом реальных процессов и взаимодействий. В определенности исследуемого свойства выражается определенность его носителя, вещи, и эта определенность, как и самая вещь, может быть установлена только опытным путем.
Читать дальшеИнтервал:
Закладка: