Л. Науменко - Монизм как принцип диалектической логики
- Название:Монизм как принцип диалектической логики
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1968
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Л. Науменко - Монизм как принцип диалектической логики краткое содержание
Монизм как принцип диалектической логики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Методы аналитической геометрии Декарта и современной дифференциальной геометрии, теории групп или проективной геометрии позволяют установить единый метод непрерывного преобразования любой самой сложной фигуры в другую. То, что в геометрии древних решается путем сложных и разрозненных операций, аналитическая геометрия разрешает более простым и единообразным способом. Так, например, теория конических сечений была построена еще Аполлонием Пергским (265-217 гг. до н.э.), но его изложение имело чрезвычайно сложную форму. То, что у Аполлония распадается на восемьдесят отдельных операций, сопровождаемых построением отдельных элементарных фигур, аналитическая геометрия решает путем немногих простых операций. Все конические сечения выражаются в декартовых координатах уравнениями 2-й степени, и построение их теории было сведено к исследованию таких уравнений [142] См.: Норден А.П . Элементарное введение в геометрию Лобачевского, с. 218.
.
Аналитическая геометрия Декарта позволяет свести сложное дискретное многообразие индивидуальных синтетических фигур, кривых и т.п. к числовому единообразию их аналитического выражения в координатной системе, к некоторому непрерывному числовому ряду с едиными, однородными закономерностями. В этой системе индивид уже не представляется самодовлеющей единицей познания. Наоборот, всякая индивидуальная определенность есть продукт известного состояния некоторой универсальной среды, между индивидами поэтому нет такого различия, которое бросается в глаза при их синтетическом исследовании, т.е. в непосредственном созерцании. Различия между отдельными геометрическими образами здесь находятся не «наряду» с определенными тождественными чертами, но вытекают из их тождественной сущности в соответствии с законами геометрии.
При дедуктивном построении геометрии мышление исходит не из отдельных геометрических объектов, но из одной и непрерывной закономерности, которая и определяет индивидуумы в их особенностях, из некоторого единого метода построения всей совокупности объектов. Изолированные пространственные формы, «образы», которые в своей индивидуальности даже боготворились греками, рассматривавшими их как некоторые индивидуальные сущности, «эйдосы» (треугольник, сфера и т.п. или тройка, семерка у пифагорейцев), были развенчаны и сведены к ряду некоторых простейших и всеобщих соотношений.
Любая геометрическая фигура рассматривается в аналитической геометрии как организованное множество точек, каждая из которых согласно координатному методу определена ее расстоянием от осей координат. Это расстояние подчиняется некоторому числовому закону. Но расстояние есть нечто такое, в чем данная фигура уже не существует в форме своей исключительной, индивидуальной определенности.
Расстояние, взятое в его числовом выражении, есть ее «плебейская», рядовая сущность. Эта ее сущность и раскрывается аналитическим методом. Особенности фигуры, синтетически представляющиеся неразложимыми, при аналитическом методе сводятся к ординарным особенностям числового ряда. Это и позволяет единообразно рассмотреть все царство индивидуальностей. Введение в геометрию дифференциальных методов еще более расширило ее возможности в этом направлении.
Первым успехом дифференциальной геометрии было создание (XVIII в.) работами Эйлера, Лагранжа и Монжа теории кривых линий и основы теорий поверхностей. В этих работах дифференциальная геометрия еще не рассматривалась, однако как самостоятельная дисциплина она представляла собой приложение анализа к геометрии. Выход в свет в 1827 г. сочинения К.Ф. Гаусса «Рассуждение о кривых поверхностях» положил начало существованию дифференциальной геометрии как самостоятельной дисциплины.
То же следует сказать и о геометрии синтетической, проективной, аффинной, конформной и т.п.
В проективной геометрии, например, рассматриваются не отдельные фигуры, но их закономерная и непрерывная связь, позволяющая рассматривать свойства одной фигуры как проективное преобразование другой, т.е. логическую зависимость определения одной фигуры через тождественное преобразование определенности другой. (Условия этого тождественного преобразования формулируются в аксиоматике: при проективных преобразованиях остаются тождественными отношения инцидентности точки и прямой, касания прямой и какой-либо линии, ангармоническое отношение четырех точек или четырех прямых и т.п., но существенно искажаются соотношения метрические; при конформных преобразованиях остаются инвариантными углы между любыми линиями; в топологии рассматриваются свойства, остающиеся инвариантными при всех изменениях фигуры, за исключением тех, которые приводят к ее «разрыву» или «растяжению».)
В целях сохранения непрерывности связи и выводимости одних фигур из других Понселе вводит в проективную геометрию широко применяемый в современной математике метод «идеальных элементов», например «бесконечно удаленной точки», которая с точки зрения созерцания совершенно бессмысленна. Тем не менее, как элемент связи преобразования такое понятие является истинным.
В проективной геометрии отдельная фигура рассматривается не сама по себе, но лишь как элемент, основные соотношения определенности которого строго фиксированы и из которого путем известных преобразований этих соотношений мы можем получить все многообразие других геометрических фигур как модификацию или трансформацию исходной определенности, а именно как непрерывное преобразование элементов, в которых выражается ее положение. Изменение этих элементов дает нам ряд пространственных образов, индивидуально различных и в то же время генетически связанных. Известные же соотношения которые были указаны выше, остаются инвариантными для всей системы в целом. Они-то и являются критерием проективного преобразования.
Инварианты непрерывного преобразования являются свойством не отдельной фигуры, а именно систематически рассматриваемой их совокупности. Ряд метаморфоз, которые претерпевает фигура при ее проективных преобразованиях, приводит в конце концов к такому образу, в котором трудно или совершенно невозможно усмотреть первоначальный образ, и тем не менее фигура, элементы которой установлены в аксиоматике, остается в своей определенности тождественной самой себе. Это и дает возможность за индивидуальной формой данной фигуры рассмотреть ее геометрическую сущность.
Математический генезис превращенной формы, разумеется, будет иметь только тот специфически логический смысл, о котором говорилось выше. Если некоторую фигуру, имеющую форму эллипса, мы рассматриваем как результат проективного преобразования круга, то это вовсе не значит, что в своем реальном генезисе объекты, имеющие форму эллипса, возникают из вида, имеющего форму круга.
Читать дальшеИнтервал:
Закладка: