Коллектив авторов - Философия в систематическом изложении (сборник)
- Название:Философия в систематическом изложении (сборник)
- Автор:
- Жанр:
- Издательство:Литагент «Территория будущего»19b49327-57d0-11e1-aac2-5924aae99221
- Год:2007
- Город:М.
- ISBN:5-91129-011-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Философия в систематическом изложении (сборник) краткое содержание
Данное издание представляет собой сборник избранных работ зарубежных мыслителей, ученых о философии, связи философии с другими науками, задачах философии, ее сущности.
Философия в систематическом изложении (сборник) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Таким образом, мы и законы математики, этой наиболее точной из всех наук, должны признать такими же абстракциями опыта, как и положения, образуемые путем абстракции в других областях опыта. Кант верно понял это, когда заявил, что, например, 7 + 5 = 12 – не аналитическое положение, не умножающее наше познание, а синтетическое. Оно означает следующее. При помощи перечисления получаем сначала многообразие 7, затем – также многообразие 5. Если мы вторую операцию проделаем над тем же многообразием, но непосредственно после первой операции, то полученный результат будет тождествен с получаемым после операции счета до 12. Что это положение содержит нечто новое, следует из того, что оно высказывает нечто о процессе сложения двух считанных многообразий, который не содержится в простой операции счета, сколько ни продолжать счет. Но, что результат не априорен, следует из того, что при более крупных числах мы должны установить это при помощи подсчета и на готовом счете не можем непосредственно заметить, правилен ли он или нет.
Попутно было против этого выставлено то соображение, что мы не можем представить себе ложного математического положения. Но когда я говорю 17 × 35 = 585, то я отлично могу себе это представить, хотя это и неверно, ибо ошибку я устанавливаю только при проверке. В положении 5 × 7 = 45 я нахожу ошибку, не прибегая к помощи исследования, потому что я знаю правильное положение наизусть, но я его так же могу мыслить, как и положение: бромистые соли дают красную окраску пламени. На самом деле они дают зеленую окраску, но только химик скажет, что это, само собою разумеется, неверно. Само по себе это положение так легко может быть себе представлено, что неопытный человек должен предварительно подумать, верно ли оно или нет.
Доказав эмпирический характер математических положений, мы должны еще остановиться на часто выставляемом возражении, что математика уже потому наука неэмпирическая, что предполагаемые ею вещи в опыте не существуют. Особенно часто это соображение выставляется применительно к геометрии. Не существует-де ни геометрической точки, ни геометрической прямой или плоскости, ибо все действительные точки, прямые и плоскости безнадежно отступают от идеальных, рассматриваемых геометрией.
Все это совершенно верно, но беда в том, что так обстоит дело во всех науках, ибо во всех случаях речь идет о результатах общего метода отвлечения. Пользуясь им, мы умышленно отказываемся учитывать фактически существующие свойства и рассматриваем объект не так, как он есть, а так, каким он был бы, если б этих свойств не было. Чем общёе какая-нибудь наука, тем больше свойств отпадает при методе отвлечения; поэтому-то их и остается так мало в математике, этой наиболее общей из всех наук. Когда физик указывает плотность какого-нибудь тела, то он при этом формально исходит из предпосылки, что его тело совершенно однородно, т. е. что его плотность в исследуемом куске везде совершенно одинакова. Слишком хорошо известно, что подобная предпосылка никогда не бывает строго верна. Но определенная физиком плотность относится к недействительному, идеально однородному телу точно так же, как положения геометрии относятся к идеально ровным плоскостям. По существу своему значение нашего исследования можно резюмировать так: в той же мере, в какой действительный объект приближается к идеальному, положение, высказанное об идеальном объекте, относится к объекту действительному.
Из сказанного вытекает значение так часто подчеркиваемого обстоятельства, что математика есть свободное создание человеческого духа, ибо она рассматривает объекты произвольной природы, которые она связывает по произвольно данным законам. В действительности употребляемые понятия не произвольны, а подобраны так, чтоб они могли быть применены при приблизительном изображении возможно большего количества действительных вещей и их отношений и чтоб научное оперирование им было сопряжено с минимальными затруднениями. Мы могли бы, например, в геометрии употреблять вместо прямой линии линию зигзагообразную, и, придавая зубцам зигзага соответственную величину, мы могли бы достигнуть любого приближения к предложенной нам действительной линии. Но рассмотрение подобной линии было бы сопряжено с чрезвычайно большими трудностями при исчислении и конструкции, которые не были бы возмещены соответственными выгодами в смысле научных результатов. Выбор научной абстракции обусловлен, как это впервые показал Э. Мах, экономическими соображениями, т. е. выбирают то, при помощи которого возможно достижение наибольших результатов при наименьшей трате. Так как подобная задача, в общем, не может быть окончательно решена при первой попытке, то наука, как мы видим, постоянно озабочена заменой нецелесообразных понятий лучшими, преимущества которых обнаружены соответственными исследованиями.
Так же мало произвольны и математические законы , по которым связываются эти образованные применительно к природе понятия. Возьмем одно из основных употребительных в математике положений, например: две величины, порознь равные третьей, равны между собой. Смастерив две величины, равные третьей данной величине, и сравнив эти величины между собою, мы можем убедиться в обязательности этого закона и для избранного примера. Точно так же нельзя произвольно допустить необязательность этого положения, не удалившись от возможности изложения фактического положения вещей. Те же соображения относятся к любому другому математическому положению, которое служит таким же отражением опытных отношений, как и всякое другое естественнонаучное положение.
Но, возразят нам, математические законы абсолютно точны, между тем как точность их проверки на опыте ограничена. С последним несомненно нужно согласиться, первое же утверждение лишено какого бы то ни было смысла. Равны ли две величины или нет, т. е. может ли при определенных предпосылках одна величина быть заменена другой без изменения существующих отношений – этот вопрос может быть предложен только опыту. При математическом исследовании произвольно ограничиваешься одной стороной объектов, их величиной, и категорически отказываешься от рассмотрения других их сторон. На эмпирических величинах математические законы были признаны практически правильными и поэтому им было дано теоретически общее выражение. Так как наблюдаемые отклонения всегда зависят от точности измерения и сравнения, то при помощи той же индукции, которая лежит в основе всех законов о природе, было выведено заключение, что при неограниченно большой точности ошибки могут быть доведены до неограниченно малых размеров. Так называемая математическая точность оказывается, таким образом, допущением, справедливость которого до сих пор подтверждалась при всех проверках, но отнюдь нельзя утверждать, что оно застраховано от изменений или ограничений при каких-нибудь иных, нами еще не достигнутых условиях. Кроме того, из всех допущений оно наиболее простое и для практического употребления наиболее целесообразное.
Читать дальшеИнтервал:
Закладка: