Дмитрий Гусев - Логика. Учебное пособие
- Название:Логика. Учебное пособие
- Автор:
- Жанр:
- Издательство:Литагент «Прометей»86f6ded2-1642-11e4-a844-0025905a069a
- Год:2015
- Город:Москва
- ISBN:978-5-9906264-8-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Гусев - Логика. Учебное пособие краткое содержание
Что такое логика? Чем занимается эта древняя и в то же время всегда молодая наука? Зачем она нужна, можно ли без нее обойтись, и какую роль она играет в жизни человека? Что такое формы мышления и каковы основные законы мышления? К чему приводят многочисленные логические ошибки, которые мы непроизвольно или сознательно допускаем в мышлении и речи? Что такое доказательство и каковы его разновидности? Что представляют собой основные правила доказательства и ошибки, возникающие при их нарушении? Как сделать свои мысли ясными и отчетливыми, как надо их выражать, чтобы окружающие всегда понимали, что вы хотите сказать; как отстаивать свою точку зрения и убеждать собеседника? Как грамотно вести дискуссию и одерживать победу в споре? Что такое софизмы и логические парадоксы? Обо всем этом вы узнаете, прочитав книгу, которая отличается от многих других учебных пособий по логике тем, что читать ее будет нетрудно: автор, много лет преподающий логику студентам и школьникам, постарался сделать предлагаемый вашему вниманию материал простым и ясным, а по возможности – интересным и увлекательным.
Книга адресована студентам и школьникам, изучающим логику, преподавателям – в качестве обмена педагогическим опытом – и всем, интересующимся логикой и другими гуманитарными науками.
Логика. Учебное пособие - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Как уже говорилось, важным свойством суждений, в отличие от понятий, является то, что они могут быть истинными или ложными. Что касается сравнимых суждений, о которых идет речь в данном параграфе, то истинностные значения каждого из них определенным образом связаны с истинностными значениями остальных. Так если суждение вида А является истинным или ложным, то три других (I, Е, О) сравнимых с ним суждения (т. е. имеющих сходные с ним субъекты и предикаты) в зависимости от этого (т. е. от истинности или ложности суждения вида А) тоже являются истинными или ложными. Например, если суждение вида А: Все тигры – это хищники является истинным, то суждение вида I: Некоторые тигры – это хищники также является истинным (если все тигры – хищники, то и часть из них, т. е. некоторые тигры – это тоже хищники), суждение вида Е: Все тигры – это не хищники является ложным, и суждение вида О: Некоторые тигры – это не хищники также является ложным. Таким образом, в данном случае из истинности суждения вида А вытекает истинность суждения вида I и ложность суждений вида Е и вида О (разумеется, речь идет о сравнимых суждениях, т. е. имеющих одинаковые субъекты и предикаты).
Далее представлены все случаи отношений между истинностными значениями простых сравнимых суждений.
1. Если суждение вида А является истинным, то суждение вида I также является истинным, а суждения вида Е и О являются ложными.
2. Если суждение вида А является ложным, то суждение вида I является неопределенным по истинности (т. е. может быть как истинным, так и ложным, в зависимости от того, о чем будет идти в нем речь), суждение вида Е является также неопределенным по истинности, а суждение вида О является истинным. (Далее будем применять сокращения, например, вместо выражения «суждение вида А» будем говорить «А», а вместо «является истинным» – просто «истинно»).
3. Если Е истинно, то А ложно, I ложно, О истинно.
4. Если Е ложно, то А неопределенно по истинности, I истинно, О неопределенно по истинности.
5. Если I истинно, то А неопределенно по истинности, Е ложно, О неопределенно по истинности.
6. Если I ложно, то А ложно, Е истинно, О истинно.
7. Если О истинно, то А ложно, Е неопределенно по истинности, I неопределенно по истинности.
8. Если О ложно, то А истинно, Е ложно, I истинно.
Используя рассмотренные правила, можно делать выводы об истинности простых сравнимых суждений с помощью логического квадрата (или, как часто говорят в логике, – по логическому квадрату). Выше был приведен пример таких выводов на основе суждения вида А: Все тигры являются хищниками , где из его истинности вытекали определенные истинностные значения других суждений – I, Е, О. Рассмотрим еще один пример. Возьмем суждение вида Е: Все треугольники не являются квадратами и сделаем из его истинности выводы об истинностных значениях суждений А, I, О. Когда данное суждение вида Е истинно (см. правила выше), то суждение вида А: Все треугольники являются квадратами ложно, суждение вида I: Некоторые треугольники являются квадратами также ложно, а суждение вида О: Некоторые треугольники не являются квадратами истинно (если все треугольники не являются квадратами, то и часть треугольников, т. е. некоторые треугольники также не являются ими).
2.10. Сложные суждения
Как мы уже знаем, простые суждения включают в свой состав один субъект и один предикат. Поимо простых суждений существуют также сложные суждения. Каждое сложное суждение состоит из простых суждений, соединенных каким-либо союзом. В зависимости от этого союза выделяется, как правило, шесть видов сложных суждений.
Конъюнктивное суждениеили конъюнкция– это сложное суждение с соединительным союзом «и», который обозначается в логике условным знаком ∧. С помощью этого знака конъюнктивное суждение, состоящее из двух простых суждений, можно представить в виде формулы а∧ в(читается «а и в»), где а и в – это два каких-либо простых суждения. Например, сложное суждение: Сверкнула молния, и загремел гром является конъюнктивным или конъюнкцией (соединением) двух простых суждений:
1. Сверкнула молния.,
2. Загремел гром.
Конъюнкция может состоять не только из двух, но и из большего количества простых суждений. Например: Сверкнула молния, и загремел гром, и пошел дождь (а ∧ в ∧ с).
Дизъюнктивное суждениеили дизъюнкция– это сложное суждение с разделительным союзом «или». Вспомним, что, говорив о логических операциях сложения и умножения понятий, мы отмечали неоднозначность этого союза, который может использоваться как в нестрогом (неисключающем) значении, так и в строгом (исключающем). Неудивительно поэтому, что дизъюнктивные суждения делятся на два вида.
Нестрогая дизъюнкция– это сложное суждение с разделительным союзом «или»в его неисключающем (нестрогом) значении, который обозначается условным знаком ⋁. С помощью этого знака нестрогое дизъюнктивное суждение, состоящее из двух простых суждений можно представить в виде формулы а⋁ в(читается «а или в»), где а и в – это два каких-либо простых суждения. Например, сложное суждение: Он изучает английский, или он изучает немецкий является нестрогим дизъюнктивным или нестрогой дизъюнкцией (разделением) двух простых суждений:
1. Он изучает английский.,
2. Он изучает немецкий.
Как видим, эти суждения друг друга не исключают, ведь возможно изучать и английский, и немецкий одновременно, в силу чего данная дизъюнкция является нестрогой.
Строгая дизъюнкция– это сложное суждение с разделительным союзом «или» в его исключающем (строгом) значении, который обозначается условным знаком ⊻. С помощью этого знака строгое дизъюнктивное суждение, состоящее из двух простых суждений, можно представить в виде формулы а⊻ в(читается «или а, или в»), где а и в – это два каких-либо простых суждения. Например, сложное суждение: Он учится в 9 классе, или он учится в 11 классе является строгим дизъюнктивным или строгой дизъюнкцией (разделением) двух простых суждений:
1. Он учится в 9 классе.,
2. Он учится в 11 классе.
Обратим внимание на то, что эти суждения друг друга исключают, ведь невозможно одновременно учиться и в 9 и в 11 классе (если он учится в 9 классе, то обязательно не учится в 11 классе и наоборот), в силу чего данная дизъюнкция является строгой. Как нестрогая, так и строгая дизъюнкция могут состоять не только из двух, но из большего числа простых суждений. Например: Он изучает английский или он изучает немецкий, или он изучает французский (а ⋁ в ⋁ с) или Он учится в 9 классе или он учится в 10 классе, или он учится в 11 классе (а ⊻ в ⊻ с).
Читать дальшеИнтервал:
Закладка: