Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]

Тут можно читать онлайн Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - бесплатно ознакомительный отрывок. Жанр: sci_popular, издательство Альпина нон-фикшн, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-9614-4944-0
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] краткое содержание

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Что вы думаете о машинах, которые думают?» На этот вопрос — и на другие вопросы, вытекающие из него, — отвечают ученые и популяризаторы науки, инженеры и философы, писатели-фантасты и прочие люди искусства — без малого две сотни интеллектуалов. Российскому читателю многие из них хорошо известны: Стивен Пинкер, Лоуренс Краусс, Фрэнк Вильчек, Роберт Сапольски, Мартин Рис, Шон Кэрролл, Ник Бостром, Мартин Селигман, Майкл Шермер, Дэниел Деннет, Марио Ливио, Дэниел Эверетт, Джон Маркофф, Эрик Тополь, Сэт Ллойд, Фримен Дайсон, Карло Ровелли… Их взгляды на предмет порой радикально различаются, кто-то считает искусственный интеллект благом, кто-то — злом, кто-то — нашим неизбежным будущим, кто-то — вздором, а кто-то — уже существующей реальностью. Такое многообразие мнений поможет читателю составить целостное и всестороннее представление о проблеме.

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - читать онлайн бесплатно ознакомительный отрывок

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1997 году суперкомпьютер обыграл чемпиона мира по шахматам Гарри Каспарова. Сегодня у десятков программ, работающих на ноутбуках, шахматный рейтинг выше, чем у любого когда-либо жившего человека. Компьютеры определенно могут демонстрировать более высокую производительность при игре в шахматы, чем мы. Но вот уровень их шахматной компетентности даже не стоял рядом с человеческим.

Все шахматные программы используют тьюринговский метод решения «в лоб» — поиском по дереву с эвристической оценкой. В 1970-х скорость компьютеров была такова, что этот подход перегружал программы ИИ, когда они пытались эмулировать то, как люди, по их собственным словам, обдумывают следующий ход, и в результате от алгоритма в основном отказались. У сегодняшних шахматных программ нет способа определить, почему один ход лучше, чем другой, кроме того, ведет ли он игру к той части дерева вариантов, где у противника останется меньше хороших ходов. Игрок-человек может делать обобщения, объясняя, чем хороши определенные виды ходов, другому игроку-человеку. Программы, основанные на прямых вычислениях, не способны учить людей шахматам, кроме как выступая в роли спарринг-партнера. Делать выводы и строить аналогии, учиться самостоятельно — задача человека. Шахматная программа не знает, что обыгрывает противника, не знает, что она — учебное пособие, не знает, что играет во что-то под названием «шахматы», да и само понятие «игра» ей неизвестно. Создание шахматной программы, опирающейся на «грубую силу» и побеждающей любого человека, совершенно не приближает нас к компетентности в области шахмат.

Теперь рассмотрим глубинное обучение, которое захватывает воображение людей уже где-то год или около того. Это новая версия обратного распространения, алгоритма обучения, известного примерно три десятилетия и основанного на абстрактных моделях нейронов. Слои нейронов преобразуются из единичного сигнала, такого как амплитуда звуковой волны или яркость пикселя в изображении, во все более высокоуровневые описания полного значения сигнала: в слово, которое слагают звуки, в предметы, запечатленные на изображении. Первоначально обратное распространение могло на практике работать только с двумя или тремя слоями нейронов, так что нужно было проделать некоторую предварительную обработку, прежде чем применять алгоритмы обучения, чтобы получить из сигналов более структурированные данные. Новые версии работают с большим числом слоев, сети становятся глубже — отсюда и название «глубинное обучение». Сейчас предварительные этапы обработки также включены в обучение, это позволяет исключить человеческий фактор, и новые алгоритмы работают намного лучше использовавшихся каких-то три года назад, потому-то они и привлекают к себе широкое внимание. Они опираются на мощные вычислительные ресурсы серверных парков и на очень большие массивы данных, которых раньше не существовало. Но, что важнее всего, они также опираются на последние научные разработки.

Известный пример того, как они работают, — это маркировка изображения как относящегося к классу «ребенок с мягкой игрушкой». Когда вы смотрите на изображение, то именно это и видите. Алгоритм очень хорошо справился с маркировкой, намного лучше, чем прогнозировали практикующие специалисты по искусственному интеллекту. Но у него нет полноты компетентности, которая есть у человека, имеющего дело с тем же самым изображением.

Алгоритм обучения знает, что на изображении есть ребенок, но не знает строения ребенка, равно как не знает и того, где именно на изображении он расположен. Нынешние алгоритмы глубокого обучения способны только обозначить вероятность для каждого пикселя: что именно этот пиксель является частью ребенка. В то время как человек видит, что ребенок занимает среднюю четверть изображения, у современного алгоритма есть только вероятностное представление о пространственной протяженности ребенка. Он не способен применить исключающее правило и заявить, что пиксели на границах изображения не могут с ненулевой вероятностью также не быть частью ребенка. Если взглянуть на слои нейронов изнутри, то мы увидим, что одно из свойств, изученных на данном уровне, — это участок изображения, похожий на глаз, а другое — участок, похожий на стопу. Однако нынешние алгоритмы не способны понять, какие пространственные отношения между глазами и ступнями в принципе допустимы на данном изображении, а потому их можно легко одурачить, подсунув им гротескный коллаж из частей ребенка, и они посчитают, что на изображении — ребенок. Ни один человек такого не сделает; он сразу ясно увидит, что ему подсунули какую-то ерунду. А еще современный алгоритм не сможет сообщить роботу, в какой точке пространства нужно захватить ребенка, чтобы поднять его, где надо держать бутылочку, чтобы накормить его, и с какой стороны подойти, чтобы поменять подгузник. Даже самому современному алгоритму очень далеко до компетентности человеческого уровня в области понимания изображений.

Полным ходом ведутся работы над тем, чтобы добавить в глубинное обучение направленность внимания и обработку согласованной пространственной структуры. Это тяжелый научно-исследовательский труд, и мы понятия не имеем о том, насколько сложным он будет, сколько уйдет времени, а также не заведет ли нас в тупик такой подход. Потребовалось около 30 лет, чтобы проделать путь от обратного распространения до глубинного обучения, и многие исследователи считали, что у обратного распространения нет будущего. Они ошибались, но я бы не удивился, если бы они оказались правы, поскольку мы все же узнали, что алгоритм обратного распространения — это не то, что происходит в голове у человека.

Страхи по поводу того, что системы искусственного интеллекта выйдут из под контроля и либо покорят людей, либо сделают их лишними на планете, не имеют ни малейшего основания. Введенные в заблуждение «словами-чемоданами», люди совершают ошибки категоризации — ошибки такого рода, как если бы распространение более эффективных двигателей внутреннего сгорания означало скорое появление варп-двигателей.

Искусственный интеллект сделает вас умнее

Терренс Сейновски
Специалист по вычислительной нейрофизиологии; профессор Института Солка; автор, совместно со Стивеном Кварцем, книги «Лжецы, любовники и герои: Что новая наука о мозге говорит нам о том, как мы становимся теми, кто мы есть» (Liars, Lovers, and Heroes: What the New Brain Science Reveals About How We Become Who We Are)

Глубинное обучение — актуальная сегодня тема в области машинного обучения. Первые алгоритмы такого рода появились в 1980-х годах, но компьютеры тогда были медленными и могли моделировать лишь несколько сотен нейронов с одним слоем скрытых элементов между вводом и выводом. Обучение на примерах — привлекательная альтернатива искусственному интеллекту, основанному на правилах, ведь его создание — очень трудоемкая задача. С бо́льшим количеством слоев скрытых элементов между вводом и выводом можно получить больше абстрактных свойств из данных для обучения. В структуре коры головного мозга миллиарды нейронов образуют десять слоев. Раньше много спорили о том, насколько будет улучшаться производительность нейронных сетей с ростом их размеров и глубины. В те годы не хватало не только более производительных компьютеров, но также и больших объемов данных для обучения сети.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] отзывы


Отзывы читателей о книге Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте], автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x