Carlos Casado - Вначале была аксиома. Гильберт. Основания математики
- Название:Вначале была аксиома. Гильберт. Основания математики
- Автор:
- Жанр:
- Издательство:Де Агостини
- Год:2015
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Carlos Casado - Вначале была аксиома. Гильберт. Основания математики краткое содержание
Вначале была аксиома. Гильберт. Основания математики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Квантовая механика фон Неймана, безупречная для математиков, столкнулась с тем, что физики предпочитали квантовую механику Дирака, которая оказалась более полезной, несмотря на отсутствие строгости. Благодаря работам Лорана Шварца и Александра Гротендика по функциональному анализу, в 1950-1960 годы дельта-функции приобрели статус математической природы, формализовавшись как обобщенные функции, или распределения. Так формализм Дирака перестал быть математически подозрительным, поскольку вошел в состав «оснащенных»гильбертовых пространств (или триплетов Гельфанда). Идея состоит в том, чтобы связать лучшее в формализме фон Неймана (строгое гильбертово пространство) и лучшее в формализме Дирака (полезная дельта-функция) внутри одной непротиворечивой математической структуры. С этой целью пытаются пойти дальше гильбертова пространства и включить такие своеобразные объекты, как дельта-функция, но не теряя в то же время хорошей геометрии гильбертова пространства. Решение заключается в рассмотрении структуры вокруг пространства, следуя духу теории распределений: взять обычное гильбертово пространство и оснастить его двумя другими пространствами — одним поменьше и другим побольше, — которые содержат соответственно все хорошие функции (тестовые функции) и все плохие функции (своеобразные функции, такие как δ Дирака). Множество из этих трех пространств называют«оснащенным»гильбертовым пространством, или триплетом Гельфанда.
Математические пространства, на которых были построены матричная и волновая механика, были очень разными: одно было дискретным и алгебраическим, другое — непрерывным и аналитическим. Как убедился фон Нейман, нет ничего удивительного в том, что их унификация не может быть достигнута без некоторого насилия над формализмом и математикой. Однако он заметил, что пространства функций, определенных в них, были в основном идентичными. Состояния атома были представлены в матричной механике посредством последовательностей чисел суммируемого квадрата, так что функциональное пространство, которое стояло за этим, было i 2, то есть гильбертовым пространством по определению. Волновые функции волновой механики всегда относились к интегрируемому квадрату, то есть принадлежали функциональному пространству L rИ для этих двух пространств действовала теорема Фишера — Риса, хорошо известная математикам с 1907 года и гласящая, что оба эти пространства изоморфны. Так фон Нейман решил головоломку математической эквивалентности квантовых механик, показав, что механика Гейзенберга (сосредоточенная на матрицах и суммах) и механика Шрёдингера (сосредоточенная на функциях и интегралах) математически эквивалентны, поскольку являются вычислениями в двух изоморфных, идентичных гильбертовых пространствах.
До этого времени под гильбертовым пространством понималось одно из двух конкретных пространств £ 2или L rФон Нейман первым задумал абстрактное гильбертово пространство в современном его понимании. Избегая конкретных представлений, он работал с понятиями, полученными из аксиом, и пришел к распространению спектральной теории Гильберта в соответствии с квантовыми потребностями.
Гильберт еще в начале века установил основы пространства бесконечной размерности. Но волей судеб такая абстрактная математическая теория, задуманная с опережением в 20 лет, подошла к замку квантовой механики. С тех пор математическая структура квантовой физики сопряжена с гильбертовым пространством. Описание состояния квантовой системы делается через вектор этого пространства. И физические величины изучаются с помощью операторов, определенных в гильбертовом пространстве. В результате появления квантовой механики теория гильбертовых пространств оказалась аксиоматически обоснованной, чему Гильберт был свидетелем.
ГЛАВА 4
Кризис оснований
С развитием математической логики и теории множеств удалось приблизиться к понятию, которое до той поры казалось бесполезным, — бесконечность. Но при этом углубилась трещина, проходящая по основанию математики. Наличие многочисленных парадоксов показало, что здание математики построено на песке. Тогда математики включились в гонку переоснования своей науки. Некоторые ученые встали на сторону логицизма Фреге и Рассела, другие разделились на две непримиримые группы: лидером интуиционистов стал Брауэр, а формалистов возглавил Гильберт.
В 1920 году Гильберт направился в беспокойные воды оснований математики и до конца карьеры развивал исключительно эту область. В некоторой степени ученый с удвоенными усилиями возобновил свое исследование оснований математики, хотя на этот раз он был немного более амбициозен, чем 20 лет назад. Он действовал не в одиночку. Его верными оруженосцами стали Пауль Бернайс (1888-1977), один из его ассистентов в Гёттингене, и Вильгельм Аккерман (1896-1962), преподаватель средней школы, его бывший ученик (Гильберт отказался дать ему должность в университете, узнав, что тот намеревается обзавестись семьей, поскольку, по его мнению, это отвлекло бы его от исследовательской деятельности). Важной составляющей этой работы в долгий межвоенный период стали оживленные дискуссии немецкого математика и его ближайших коллег с виднейшими европейскими математиками, которые придерживались противоположных взглядов.
Началом размышлений вокруг предмета математики исторически считается последняя четверть XIX века. Однако любопытство в отношении природы математического знания не ново, ему 2000 лет. Первый кризис оснований произошел в Древней Греции, когда разрушилась пифагорова арифметика. Пифагорейцы полагали, что все числа рациональны, но вскоре выяснилось, что существуют также иррациональные числа (как V2). Открытие этих неизмеримых чисел вызвало раскол в их математике. Рациональные числа не полностью описывали действительность. Континуум действительных чисел (например, прямая) образован не дискретным набором индивидуальных атомов. Работы Евдокса (IV век до н.э.) по обоснованиям примирили сознание с иррациональной бесконечностью и заложили фундамент, на котором была воздвигнута евклидова геометрия.
Работы, связанные со вторым кризисом оснований, уже в XX веке разъясняли, в чем заключаются метод, строгость и истина новой математики — скорее аксиоматичной, чем интуитивной, скорее экзистенциальной, чем конструктивной. Нужно понимать, что не избежал Гильберт и подводных камней. В их числе выделим ряд антагонических понятий математики, которые возникли не из ничего, а уходят корнями в историю развития самой точной из наук. Распространение математического анализа с начала XIX века, наряду с зачатками теории множеств и математической логики, — это путеводная нить дисциплины, которая стала называться философией, или основаниями математики. Но вернемся на некоторое время к истокам.
Читать дальшеИнтервал:
Закладка: