Знание-сила, 2008 № 07 (973)
- Название:Знание-сила, 2008 № 07 (973)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2008
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Знание-сила, 2008 № 07 (973) краткое содержание
Знание-сила, 2008 № 07 (973) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Дело в том, что в исходном состоянии ап-электрон, переходивший из первого слоя во второй, становился там, понятно, даун-электроном, а теперь он так и останется ап-электроном. И то же произойдет с даун-электроном, переходящим из первого слоя во второй. А подсчет по тем же школьным формулам немедленно показывает, что эта новая ситуация изменяет полное сопротивление каждого слоя ап- и даун-токам в нем, а значит — и суммарное сопротивление всей системы в целом по сравнению с тем случаем, когда слои были намагничены противоположно. Тот, кто потрудится произвести эти несложные расчеты, легко убедится, что это изменение сопротивления будет тем больше, чем больше разница в сопротивлении ферромагнетика прохождению ап- и даун-токов (точнее, квадрату этой разницы).
Как показали эксперименты Ферта — Грюнберга, эта «ап-даун»-разница, при всей ее небольшой величине, тем не менее приводит к тому, что прохождения «сэндвича» даже над микроскопической ячейкой диска с ее ничтожным магнитным полем достаточно, чтобы вызвать в этом «сэндвиче» огромное изменение сопротивления, то есть ГМР. Как мы видели, необходимым условием появления этого ГМР является наличие нанометровой прослойки, то есть эффект действительно имеет нанофизическую природу. А поскольку главную роль в его появлении играет «магнитное спаривание» слоев, разделенных этой прослойкой, и поскольку это «спаривание» вызывается наличием у электронов «спина» с его двумя возможностями ориентации, весь такой «сэндвич» получил в IBM название «спин-клапана», а вся новая электронная техника, основанная на таких клапанах, — название «спинтроники».
Несмотря на молодость, на счету спинтроники есть выдающиеся открытия, сделанные уже после создания жестких дисков на основе ГМР. Одним из самых недавних таких открытий является обнаружение эффекта «магнитного спаривания» в «сэндвичах» не с металлической, а с полупроводниковой прослойкой. Оказалось, что и здесь влияние одного магнитного слоя на другой передается с помощью электронов, только проходят они из слоя в слой не обычным путем, как в случае металлической прослойки, а с помощью особого квантового эффекта, именуемого «туннельным переходом», поэтому и сам эффект получил название «туннельной магниторезистентности», или ТМР. Этот эффект даже сильнее ГМР — например, в системе из Fe/MgO/Fe (при комнатной температуре) скачок сопротивления при прохождении над ячейкой диска оказался 200%! Не случайно сегодня считается, что дальнейшее развитие компьютерной техники пойдет, скорее, по линии ТМР, а не ГМР. Но это, разумеется, нисколько не уменьшает заслуги Ферта и Грюнберга. Ведь это именно они, открыв явление ГМР, проложили дорогу к появлению всех этих новых и многообещающих нанотехнологических чудес.
Сергей Ильин
Удивительные метаматериалы

В марте 2007 года[* В том же месяце в нашем журнале была опубликована статья «Метаматериалы Веселаго торят незримый путь». См. «З-С» № 3/2007.] в номере журнала Science появились две статьи, рассказывающие об одном и том же незаурядном достижении. Физикам из Калифорнийского университета в Беркли под руководством Ксян Жанга и группе ученых из Мэрилендского университета под руководством Игоря Смолянинова удалось создать «суперлинзы», собирающие лучи света во много более узкий пучок, чем это разрешается известными законами оптической дифракции. Эти законы говорят, что с помощью света нельзя различить две точки, находящиеся ближе друг к другу, чем половина длины световой волны. Для видимого света длина волны в среднем — 560 нанометров, значит, предел разрешения — это 280 нанометров. Однако в Беркли с помощью такой «суперлинзы» сумели различить две линии, находившиеся на расстоянии 100 нанометров, а в Мэриленде различили две точки, расположенные на еще более малом расстоянии — всего 70 нанометров друг от друга.
Новые линзы — не просто диковинные физические игрушки. Расчеты показывают, что у них должны быть широчайшие области практического применения, и кое-кто уже поговаривает об очередной научно-технической «революции», которую они могут произвести. Но прежде чем говорить об этой революции, следует, наверно, объяснить, как вообще могут существовать оптические устройства, нарушающие законы оптической дифракции. Самый общий ответ на этот законный вопрос звучит следующим образом: такие устройства существуют благодаря тому, что они созданы не из обычных, природных веществ, а из весьма необычных, так называемых метаматериалов. Они обладают и другими необыкновенными оптическими свойствами. Так, например, в 2006 году группа Шурига из лаборатории профессора Дэвида Смита практически показала, что с помощью суперлинз из метаматериалов можно создать вокруг объекта покрытие, которое сделает его невидимым в лучах длинноволнового диапазона (это особенно важно для создания военных самолетов, не видимых для лучей радара, и не случайно первые, да и многие нынешние исследовательские работы по таким материалам финансировались американским министерством обороны).
Метаматериалы, применяемые для создания суперлинз и покрытий для невидимости, отличаются от природных материалов тем, что имеют отрицательный показатель преломления. Поэтому они зачастую называются также «левыми материалами» — не в том, конечно, смысле, что они добываются «левым» путем, а в том, что они нарушают обычное для электромагнитных и оптических явлений «правило правой руки». В оптике это правило, наверняка памятное многим еще из школьного курса электромагнетизма, говорит, что направления магнитного и электрического поля световой волны и ее движения расположены так же, как растопыренные большой, указательный и средний пальцы правой руки. Так вот в «левых» метаматериалах эти направления подчиняются противоположному «правилу левой руки». И вызвано это именно тем, что их коэффициент преломления имеет знак минус. В самом деле, когда свет входит из вакуума в вещество, его фазовая скорость (показывающая, сколько пиков синусоиды проходит через данную точку за секунду) уменьшается в n раз (n здесь — это показатель преломления, и если он имеет знак минус, значит, фазовая скорость направлена в противоположную обычной сторону). Поэтому правило правой руки меняется на правило левой руки. Любопытно, что групповая скорость света, то есть поток энергии, направлена по-прежнему, а значит, синусоида волны в «левом» материале как будто бы идет против движения ее энергии!
Как уже сказано, «левые» оптические материалы не существуют в природе, однако многие физики давно, уже с начала ХХ века, задавались вопросом, можно ли изготовить искусственные материалы с такими свойствами. Но основополагающую статью, на которую сейчас ссылаются все, работающие в этой быстро расширяющейся области исследований, опубликовал лишь в 1967 году (в журнале «Успехи физических наук») российский физик Виктор Веселаго. В этой статье он показал, что законы физики в принципе не противоречат существованию материалов с отрицательным коэффициентом преломления. Для этого материал должен обладать отрицательной магнитной проницаемостью и отрицательной диэлектрической постоянной материала (коэффициент преломления связан с этими его физическими характеристиками).
Читать дальшеИнтервал:
Закладка: