Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.
- Название:Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.
- Автор:
- Жанр:
- Издательство:ООО «Де Агостини»,
- Год:2015
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. краткое содержание
Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Итак, Кантор постулировал — и доказал это в своих «Основаниях общей теории многообразий» 1883 года, — что процесс получения производных Р', Р", Р (3), Р (4)... в определенный момент аннулируется именно в тех случаях, когда оба множества Р и Р' конечны или счетны. Надо отметить, что Кантор уже высказывал такое предположение в 1872 году. Почему на доказательство ему потребовалось десять лет? На самом деле трудность была не столько технической, сколько психологической.
Сколько этапов потребуется преодолеть, чтобы процесс Р', Р", Р (3), Р (4)... аннулировался? Это может произойти и на первом этапе, и на втором, и на третьем и так далее, но не все так просто.
Вернемся к последовательности 3,1; 3,14; 3,141; 3,1415;..., которая постепенно все больше приближается к числу π.
Обычно в таких случаях говорят, что последовательность «приближается к числу π бесконечно»; причем «бесконечно» должно пониматься потенциально, то есть числа 3,1; 3,14; 3,141; 3,1415;... стремятся к π, но никогда его не достигнут.
В ходе своих исследований Кантор нашел пример, в котором Р', Р", Р (3), Р (4)... были разными множествами, но процесс получения их производных не аннулировался ни при каком конечном количестве переходов. Так он смог выявить множество P(∞). Символ ∞, введенный Джоном Валлисом в 1655 году, обычно использовался в исчислении для обозначения потенциальной бесконечности. Так же как числа 3,1; 3,14; 3,141; 3,1415;... все больше походят на число π, к множеству F“) все больше приближаются последовательные множества Р', Р", Р (3), Р (4)... Однако в приведенном примере Кантор также обнаружил, что i x°° )состоит из чисел 0, 1 и 2, а следовательно, его производное аннулируется. Но каково же производное множества P(∞)? Если производное от Р (3)— это Р (4), а производное от Р (4)- Р (5), логично было бы предположить, что производное от P(∞) — это P(∞+1). Это означало бы, что процесс аннулируется после
∞ + 1 переходов. Что означает «∞ + 1»?
Кантор нашел случаи, в которых процесс аннулировался на этапе ∞ + 2, или ∞ + 3, или ∞ + ∞, но не мог объяснить эти символы. Точнее, признать их тем, чем они были на самом деле, ему мешал уже упомянутый психологический барьер.
«[...] по воле всемогущего Бога меня озарили самые удивительные, самые неожиданные идеи о теории ансамблей и теории чисел. Скажу больше, я нашел то, что бродило во мне в течение долгих лет».
В этом письме Дедекинду Кантор сообщает: в 1882 году он понял, что символы ∞, ∞ + 1, ∞ + 2, ..., ∞ + ∞, ∞ + ∞ + 1, ... являются не чем иным, как трансфинитными числами, то есть такими, которые позволяют считать за пределами натуральных чисел. В первую очередь, он назвал их ординальными и, чтобы подчеркнуть, что они являются актуально бесконечными, символ оо, ассоциирующийся с потенциальной бесконечностью, заменил греческой буквой ω.
Что такое ординальные числа? Как утверждал Кантор в своей работе 1883 года, существуют два принципа порождения ординальных чисел. Первый состоит в том, что за каждым ординальным числом непосредственно идет следующее. Согласно второму принципу, если есть последовательность ординальных чисел, то и за ней сразу же идет ординальное число.
Первое ординальное число — 0, за ним идет, разумеется, 1, потом 2, 3 и так далее. Ординальные числа 0, 1,2, 3,... являются конечными, или, как говорил Кантор, числами «первого класса».
По второму принципу порождения, за последовательностью 0, 1,2, 3, 4,... стоит ординальное число: имеется в виду ω, первое трансфинитное ординальное число. Затем следуют ω + 1, ω + 2, ω + 3, ...; дальше, опять применив второй принцип порождения, мы получим новое ординальное число ω + ω, а после него — ω + ω + 1, ω + ω + 2,...
Резюмируя, ряд ординальных чисел начинается так: 0,1,2, 3,...,ω,ω + 1,ω + 2,...,ω + ω+1,ω + ω + 2,...,ω + ω + ω + 1,...,где многоточие обозначает бесконечное количество членов.
Теперь вернемся к ординалу ω и подумаем о множестве всех предшествующих ему чисел, то есть обо всех ординальных числах меньше ω. Это множество состоит из чисел 0, 1,2, 3,..., и поскольку оно счетное, Кантор утверждает, что ω — ординал «второго класса». У ординалов первого класса конечное количество предшественников, а у второго класса — счетное. Ординальное число, например ω + 1, всегда будет числом второго класса, потому что ему предшествуют числа 0,1,2,3,..., ω, образующие счетное множество. Ординальные числа ω, со + 1, ω + 2, ..., ω + ω+ 1, ω + ω + 2,..., ω + ω + ω + 1,... относятся ко второму классу. Теперь обратимся к последовательности всех ординалов второго класса: согласно второму принципу порождения, сразу же за ними идет еще одно ординальное число. Обычно оно обозначается символом Ω. Возникает вопрос: к какому классу относится Ω?
В статье 1883 года Кантор смог доказать, что все числа, предшествующие Ω, то есть и первого, и второго классов, составляют несчетное множество. Следовательно, число Ω не принадлежит ко второму классу, а является первым ординалом «третьего класса». Еще большую важность имеет тот факт, что Кантор доказал: множествам первого и второго классов соответствует кардинальное число, идущее непосредственно за кардинальным числом натуральных чисел.
Обратим внимание на изящество системы Кантора (см. рисунок): множество ординальных чисел первого класса счетное, а его кардинальное число — самое маленькое из всех бесконечных кардинальных чисел. Если мы добавим числа второго класса, то получим следующее непосредственно за ним кардинальное число. Если добавим числа третьего класса — следующее и так далее для четвертого, пятого и других классов. В 1883 году у этих кардинальных чисел еще не было отдельного названия. Кантор дал им имя в 1895 году.
В «Основаниях общей теории многообразий» математик писал, что всегда предполагал существование кардинальных чисел, больших, чем у вещественных чисел, но до того момента ему не удавалось найти никакого примера. Эта система ординалов («изящная спираль ординалов и кардиналов», по определению историка Хосе Феррейроса) позволила ему наконец доказать существование бесконечного числа уровней бесконечности.
Где в этой системе располагается кардинальное число вещественных чисел? Как мы видели, чтобы получить кардинальное число, идущее непосредственно за кардинальным числом натуральных чисел, надо прибавить первый класс ко второму. Напомним также: континуум-гипотеза гласит, что это кардинальное число вещественных чисел. Это значит, что если бы континуум-гипотеза была верной, то вся наша теория обрела бы элегантную последовательность, так как первый класс дал бы нам кардинальное число натуральных чисел, а второй класс — вещественных чисел. Сделав это открытие, Кантор понял, что континуум-гипотеза — краеугольный камень его теории, и стал одержим ее доказательством. Однако это ему не удалось, и, возможно, разочарование от неудачи стало одной из причин депрессии, поразившей его в мае 1884 года. Кантор не дожил до того момента, когда смог бы удостовериться, верна гипотеза или нет.
Читать дальшеИнтервал:
Закладка: