Жак Адамар - Исследование психологии процесса изобретения в области математики

Тут можно читать онлайн Жак Адамар - Исследование психологии процесса изобретения в области математики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Психология, издательство Советское радио, год 1970. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Исследование психологии процесса изобретения в области математики
  • Автор:
  • Жанр:
  • Издательство:
    Советское радио
  • Год:
    1970
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Жак Адамар - Исследование психологии процесса изобретения в области математики краткое содержание

Исследование психологии процесса изобретения в области математики - описание и краткое содержание, автор Жак Адамар, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В настоящее время в связи с задачами эвристического программирования возрос интерес к анализу творческого мышления человека. В книге, автор которой — один из видных математиков нашего столетия, подробно рассмотрен процесс творчества, преимущественно математиков. Особое внимание уделено роли подсознания в процессе творчества. Книга представляет интерес для математиков, кибернетиков, психологов и широкого круга читателей.

Исследование психологии процесса изобретения в области математики - читать онлайн бесплатно полную версию (весь текст целиком)

Исследование психологии процесса изобретения в области математики - читать книгу онлайн бесплатно, автор Жак Адамар
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как всегда в психологии, мы располагаем методами анализа двух видов: «объективными» и «субъективными» [4]. Субъективные, или интроспективные, методы таковы, что они проводятся как бы «наблюдением изнутри». При этом информация о способе мышления непосредственно получается самим мыслителем, который изучая самого себя, сообщает о процессах, происходящих у него в уме. Очевидным недостатком этого метода является то, что наблюдатель может исказить явление, которое он изучает. В самом деле, совершая две одновременные операции — мышления и наблюдения за своей собственной мыслью, — можно априори предположить, что они мешают друг другу. Но мы увидим, что при исследовании процесса изобретения (по крайней мере, некоторых его стадий), этого надо бояться меньше, чем при исследовании других умственных явлений. В этой книге я использую результаты самонаблюдения, единственные, для обсуждения которых я чувствую себя достаточно квалифицированным. В нашем случае эти результаты являются достаточно ясными, чтобы заслужить, как мне кажется, некоторую степень доверия. Поэтому я заранее прошу извинения: автор будет вынужден слишком часто говорить о себе.

Объективные методы, или методы наблюдения извне, — есть методы, где экспериментатор отличен от мыслящего. Наблюдение и мысль не пересекаются; но, с другой стороны, мы получаем таким образом только косвенные данные, и значение их нелегко расшифровывать. Основная причина того, что объективные методы трудно будет использовать в нашем исследовании, состоит в необходимости сравнивать большое число случаев. В соответствии с общим принципом экспериментальной науки такое сравнение должно было бы быть основным условием для достижения того, что Пуанкаре назвал «результатом с большим к.п.д.», т. е. для достижения результата, который глубоко проникает в природу вопроса. Но именно этого мы не можем иметь при исследовании такого исключительного явления, как изобретение.

Математическая «шишка»

Обычно объективные методы исследования применялись к изобретениям различных видов, но никакого специального изучения изобретений в области математики не проводилось. Существует одно исключение, которого мы кратко коснёмся. Это любопытная попытка, сделанная впервые знаменитым Галлем (Gall) и связанная с его принципом «френологии». Френология связывает наличие умственной способности не только с максимальным развитием некоторой части мозга, но и соответствующей части черепной коробки. По мнению специалистов, эта идея является весьма неудачной, хотя и принадлежит человеку, имевшему другие, более плодотворные идеи (например, Галль был предвестником понятия мозговой локализации). На основании френологического принципа математические способности должны характеризоваться специальной «шишкой» на голове, для которой Галль указывал даже местонахождение.

Идеи Галля были использованы в 1900 г. [5]невропатологом Мёбиусом (Möbius), который был внуком математика, хотя сам не имел специальной математической подготовки.

Книга Мёбиуса является довольно большим и глубоким исследованием математических способностей с точки зрения натуралиста. Она содержит ряд данных, которые представляют интерес для нашего исследования. Это касается, в частности, вопросов наследственности (математические семьи) [6], долголетия, различных способностей. Несмотря на то, что такая большая подборка материалов могла оказаться впоследствии полезной, она до сих пор не позволила сформулировать никакого общего правила, кроме того, что касается художественных способностей математиков. (Мёбиус подтверждает достаточно распространённое мнение, что большинство математиков любит музыку, и он отмечает, что они интересуются также другими видами искусства).

Итак, Мёбиус согласен с основными выводами Галля, но он считает, что хотя математический признак и существует, он может принимать более разнообразные формы, чем это следует из работы Галля.

Однако идея «шишек» Галля — Мёбиуса не получила общего признания. Анатомы и неврологи энергично возражают против учения Галля, и его френологический принцип, т. е. соответствие формы черепа форме мозга, ныне считается неверным.

Не будем больше задерживаться на этом аспекте вопроса, который нужно оставить специалистам; но небесполезно обсудить его с математической точки зрения, так как (по крайней мере, на первый взгляд) и с этой точки зрения тоже можно привести немало возражений против самого принципа такого рода исследования. Более чем сомнительно, что существует единственная ярко выраженная «математическая способность». Математическое творчество и математический ум не могут быть безотносительны к творчеству вообще и уму вообще. Редко бывает, чтобы первый математик в лицее был последним в других науках. И рассматривая вещи на более высоком уровне, отметим, что большая часть великих математиков творила и в других областях науки. Один из самых великих, Гаусс, поставил важные классические опыты по магнетизму, фундаментальные открытия Ньютона в оптике также хорошо известны. И кто может сказать, математическими или философскими способностями обусловлена форма черепа Декарта или Лейбница?

Имеется также и другое возражение: мы увидим, что не существует единственной категории математических умов, что эти умы бывают различных типов, причём различия оказываются настолько существенными, что сомнительно, чтобы они соответствовали единственному и одному и тому же свойству мозга.

Всё сказанное не противоречило бы принципу Галля, интерпретируемому в общем смысле, а именно, в смысле взаимосвязи математической работы ума с физиологией и анатомией мозга. Но конкретное приложение этого принципа, предложенное Галлем и Мёбиусом, не представляется оправданным.

В общем случае мы должны признать, что даже те виды мозговой деятельности, которые кажутся на первый взгляд простыми, на самом деле оказываются, причём самым неожиданным образом, вовсе не простыми. Объективными методами (изучение ранений в голову и т. п.) удалось установить, что именно так обстоит дело с наиболее изученным видом мозговой деятельности, а именно с речью, которая определяется многими факторами. Существуют известные мозговые локализации, как это утверждал Галль, но они не столь просты и точны, как он предполагал.

Имеются все основания думать, что математическая деятельность мозга должна быть, по меньшей мере, столь же сложной, как это установлено для речи. Хотя мы, естественно, не располагаем (и, может быть, никогда не будем располагать) в этом случае решающими данными, какими мы располагаем в отношении речи, наблюдения над процессом речи, возможно, помогут нам понять математическую деятельность мозга.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жак Адамар читать все книги автора по порядку

Жак Адамар - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Исследование психологии процесса изобретения в области математики отзывы


Отзывы читателей о книге Исследование психологии процесса изобретения в области математики, автор: Жак Адамар. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x