Жак Адамар - Исследование психологии процесса изобретения в области математики
- Название:Исследование психологии процесса изобретения в области математики
- Автор:
- Жанр:
- Издательство:Советское радио
- Год:1970
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жак Адамар - Исследование психологии процесса изобретения в области математики краткое содержание
Исследование психологии процесса изобретения в области математики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В случае математика, который, как мы говорили вначале, является служителем, а не хозяином, положение действительно иное. Каждый результат, каждое решение, которое становится ему известным, ставит перед ним новые проблемы. И действительно, мне трудно было бы привести больше чем две или три работы, которые я назвал бы скорее странными, чем действительно оригинальными.
Тем не менее, учёный может оказаться в затруднительном положении, приступая к изучению той или иной проблемы, не потому, что он знает, что она была решена, а наоборот, потому, что он не знает, решена ли она, что сделало бы его работу бесполезной; или — и это более бескорыстно с его стороны — естественно, что его внимание может привлечь вопрос (не лишённый сам по себе значения) просто потому, что им пренебрегали до сих пор. Так бывало часто со мной; я даже могу добавить, что, начав однажды работу над группой вопросов и заметив, что некоторые авторы избрали то же направление, я оставил эту тему и попытался найти что-нибудь другое. Физики мне говорили, что некоторые из корифеев современной физики не раз поступали таким же образом.
Должны ли мы изображать учёных как людей, желающих сделать какое-нибудь открытие с единственной целью «привлечь внимание публики» или «обеспечить себе приятное и независимое положение»? (Поль Сурьё). Можно допустить, что в жизни некоторых учёных иногда существенны мотивы такого рода, которые, когда мы склонны ослабить наши усилия, играют роль классической фразы: «Ты спишь, Брут». Возможно, это была не простая отписка со стороны Ампера, когда он, отвечая на постоянные напоминания и опасения Юлии Ампер, писал, что опубликование одного из его открытий — хорошее средство, чтобы получить место преподавателя в лицее. Но не такие чувства привели его к открытию; и я не могу даже себе представить, чтобы учёный мог сделать открытие, руководствуясь, главным образом, таким чувством. Исследователи с подобным направлением ума могут получить лишь посредственные результаты, идёт ли речь о выборе темы или о методе её исследования. Человек, лишённый известной любви к науке, не может добиться успеха, так как он не в состоянии сделать правильный выбор [127].
Заключительные замечания
Я попытался резюмировать и интерпретировать личные наблюдения, собранные с помощью коллег, занимающихся исследовательской работой. Было бы интересно исследовать другие важные аспекты темы, особенно «объективные» аспекты, о которых нам случалось упоминать: например, возможные связи между изобретательской мыслью и физиологией организма. Стоило бы уделить внимание идеям, в какой-то мере аналогичным идеям Галля. Но как? Для этого нужен более квалифицированный специалист, чем я, и лучше знающий физиологию мозга. Но мы наталкиваемся здесь на трудность, о которой я говорил вначале и которая заключается в том, что, с одной стороны, математики недостаточно знают нейрологию, а с другой, — нельзя требовать от нейрологов, чтобы они настолько глубоко изучили математику, как это требуется. Настанет ли такое время, когда математики будут настолько знать физиологию мозга, а нейрофизиологи будут в такой степени в курсе математических открытий, что станет возможным действенное сотрудничество?
Я не отважился также сказать что-нибудь о социальных и исторических факторах, которые, несомненно, влияют на изобретение, как и на всё прочее. Я мало что знаю о механизме этого влияния, и сомнительно, что этот механизм кому-либо известен. Попытки, подобные попытке Тэна в его «Философии искусства», несомненно, преждевременны; хотя на принципах, из которых при этом исходили, печать гения, выводы, к которым пришли, весьма гипотетичны. В самом деле, трудности при таких попытках очевидны: не только невозможен какой-либо эксперимент в этой области, но и слишком редки люди с большим творческим дарованием (не говоря уже о гениях), чтобы можно было широко применить сравнительные методы. Поэтому проблема, которой мы здесь занимались, как и проблема, которой занимался Тэн, — одна из самых трудных среди выдвигаемых перед нами историей. Воздействие общества определяет прогресс математики так же неосознанно и в достаточной мере таинственно, как оно определяет развитие литературы и искусства. Несомненно кое-что верно в том, что говорит Клейн (в связи с теорией Гальтона о наследственности) об интуитивных и логических качествах ума (и то же самое можно сказать о математической способности вообще, и о том, как различные люди используют конкретные представления); но очень маловероятно, чтобы всё обстояло так просто, как это представляли себе в школе Тэна.
Конечно, не случайно, что в эпоху Возрождения, особенно в Италии, было столько необыкновенных людей во всех сферах человеческой деятельности: Бенвенуто Челлини и Леонардо да Винчи одновременно с Галилеем; но сомнительно, что причины этого замечательного явления таковы, как предполагает Тэн [128].
Положение могло бы стать яснее, если бы вместо того, чтобы рассматривать общие случаи, мы изучили несколько индивидуальных. Говоря это, я имею в виду Кардано, который жил в ту же эпоху и поистине был одним из самых необыкновенных людей этого необыкновенного периода. И вполне естественным было бы ожидать, что открытие мнимых чисел, которое кажется скорее безумным, чем логичным, и которое осветило всю математику, было сделано человеком, чья полная приключений жизнь не всегда была образцовой с точки зрения морали, человеком, который с детства страдал галлюцинациями до такой степени, что Ломброзо выбрал его как типичный пример в главе «Гений и безумие» своей книги «Гений».
Если не прибегать к рассмотрению столь особых случаев, то исключительный характер рассматриваемых явлений становится препятствием для исследования, как только мы отходим от данных, получаемых путём самонаблюдения. С другой стороны, можно поставить вопрос, не могут ли помочь такого рода явления при изучении процессов, происходящих в других областях психологии. Например, мы видели, что рассмотренные в гл. VI проблемы имеют общие черты с рассмотренным Тэном вопросом о роли образов или с проблемами, изучаемыми гештальт-психологией. В соответствии с правилом, которое кажется применимым к любой естественной науке (и из фактов, отмеченных в гл. VIII на стр. 109–110, следует, что оно применимо даже к математике), именно исключительное явление может помочь объяснить явление обычное; следовательно, всё, что мы можем обнаружить в связи с изобретательским творчеством или даже, как в этой работе, с особой областью изобретательской деятельности, может пролить свет на психологию в целом.
Приложение I
Анкета о методах работы математиков
Интервал:
Закладка: