Жак Адамар - Исследование психологии процесса изобретения в области математики

Тут можно читать онлайн Жак Адамар - Исследование психологии процесса изобретения в области математики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Психология, издательство Советское радио, год 1970. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Исследование психологии процесса изобретения в области математики
  • Автор:
  • Жанр:
  • Издательство:
    Советское радио
  • Год:
    1970
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Жак Адамар - Исследование психологии процесса изобретения в области математики краткое содержание

Исследование психологии процесса изобретения в области математики - описание и краткое содержание, автор Жак Адамар, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В настоящее время в связи с задачами эвристического программирования возрос интерес к анализу творческого мышления человека. В книге, автор которой — один из видных математиков нашего столетия, подробно рассмотрен процесс творчества, преимущественно математиков. Особое внимание уделено роли подсознания в процессе творчества. Книга представляет интерес для математиков, кибернетиков, психологов и широкого круга читателей.

Исследование психологии процесса изобретения в области математики - читать онлайн бесплатно полную версию (весь текст целиком)

Исследование психологии процесса изобретения в области математики - читать книгу онлайн бесплатно, автор Жак Адамар
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Галуа (1811–1831). Одной из наиболее поразительных была личность Эвариста Галуа, чья трагическая жизнь, оборвавшаяся в ранней юности, дала науке один из наиболее важных памятников, которые мы знаем. Страстная натура Галуа была покорена математикой с тех пор, как он познакомился с «Геометрией» Лежандра. Но им неистово владело другое чувство, чувство восторженной преданности республиканским и освободительным идеям, за которые он страстно и порою весьма неосторожно боролся. Однако смерть настигла его в возрасте двадцати лет не в ходе этой борьбы, а на бессмысленной дуэли [119].

Галуа провёл ночь перед дуэлью, проверяя заметки о своих открытиях. Это были: рукопись, которую отклонила Академия наук как непонятную (не нужно удивляться, что столь высоко интуитивные умы высказываются очень «темно»); затем письмо другу, с короткими поспешными замечаниями о других прекрасных идеях, с многократным повторением на полях одних и тех же слов «У меня нет времени». Действительно, оставалось четыре часа до того, как он ушёл туда, где его ждала смерть.

Все его глубокие идеи были сначала забыты, и лишь через пятнадцать лет учёные с восхищением обратили внимание на мемуар, который отклонила Академия. В этом мемуаре содержится полное преобразование высшей алгебры, и он проливает яркий свет на то, о чём до тех пор лишь догадывались наиболее крупные математики, одновременно связывая алгебраическую проблему с другими проблемами из совсем иных отраслей науки.

Но в связи с тем, что непосредственно касается нашей темы, рассмотрим отрывок из письма, написанного Галуа его другу, где он формулирует теорему о «периодах» некоторого класса интегралов. Эта теорема, ясная для нас, не могла быть понята учёными, жившими в эпоху Галуа: эти «периоды» не имели смысла при состоянии науки того времени; они приобрели смысл лишь благодаря некоторым принципам теории функций, теперь классическим, но открытым четверть века спустя после смерти Галуа. Итак, нужно допустить: 1) что Галуа должен был каким-то образом составить себе представление об этих принципах; 2) что они должны были остаться для него неосознанными, так как на них у него нет и намёка, хотя они сами по себе составляют важное открытие.

Случай Галуа заслуживает внимания в связи с подчёркнутым нами выше различием. С некоторой точки зрения он нам напоминает Эрмита. Как и Эрмит, Галуа является глубоким аналитиком, хотя и стал энтузиастом науки благодаря курсу геометрии Лежандра. Один из его первых опытов (когда он ещё был на лицейской скамье) носил геометрический характер, но он остался единственным. Любопытная вещь: преподаватель математики в лицее у Галуа, г-н Ришар (заслугой которого является то, что он сразу же открыл необыкновенные способности Галуа), через пятнадцать лет стал преподавателем Эрмита; но это надо рассматривать как простое совпадение, так как очевидно, что гений таких людей является даром природы, независимо ни от какого образования.

С другой стороны, Галуа, который был очевидным представителем интуитивных умов по нашему определению (А), не кажется таковым по определению (Б). В доказательстве общей теоремы, которая содержит окончательное решение основной проблемы алгебры, нет следа «рассеянных идей», нет комбинаций разнородных по внешности принципов; его мысль, так сказать, интенсивна, но не экстенсивна. И я склоняюсь к тому, чтобы это же сказать об открытиях, содержащихся в его последнем письме (написанном в ночь перед его роковой дуэлью), хотя течение его мыслей не могло проявиться так же отчётливо в этой серии лишь кратко высказанных результатов. Это не исключает возможности случайной связи между аспектами (А) и (Б) интуиции; но в случае Галуа эти аспекты кажутся независимыми друг от друга.

Вместе с тем ясно, что Галуа глубоко отличается от Эрмита, чьё открытие квадратичных форм — типичный пример «мышления около».

Случай в работе Пуанкаре . Кажется, никто не заметил, что нечто аналогичное есть в труде Пуанкаре «Новые методы небесной механики». В III томе (стр. 261) он говорит о вариационном исчислении и использует достаточное условие для минимума, эквивалентное условию, вытекающему из метода Вейерштрасса (о котором мы говорили на стр. 105). Но он не даёт доказательства этого условия: он говорит о нём как об известном факте. Как мы указывали, метод Вейерштрасса не был опубликован к моменту, когда был написан этот том «Новых методов». Более того, у Пуанкаре нет никакого намёка на открытие Вейерштрасса, что он должен был сделать, если бы получил частным образом хоть какие-либо сведения. И особо нужно прибавить, что условие высказано в форме, несколько отличной (хотя в основном эквивалентной) от той, которая классическим образом вытекает из метода Вейерштрасса. Должны ли мы считать, что рассуждение Вейерштрасса — или другое, ему аналогичное — было открыто Пуанкаре, но осталось совершенно им не осознанным? [120]

Исторические сравнения

В подобных случаях приходится признать, что некоторые части умственного процесса развиваются в столь глубоких слоях бессознательного, что от нашего сознания остаются скрытыми элементы, которые могут быть даже очень важными. Здесь мы вновь подходим к явлению раздвоения личности в том смысле, как его рассматривали психологи XIX века.

История даёт нам даже примеры как бы посредников между этими двумя типами явлений. Сократ был уверен, что его идеи были ему продиктованы его личным демоном, и Нума Помпилий часто консультировался у нимфы по имени Эгерия.

Видимо, можно говорить об аналогичном примере и из области математики. Кардано был не только изобретателем знаменитого «карданова подвеса», но он основательно преобразовал математику изобретением мнимых чисел. Напомним, что такое мнимая величина: алгебраические правила показывают, что квадрат всякого числа, положительного или отрицательного, есть число положительное; следовательно, говорить о квадратном корне из отрицательного числа является просто абсурдом. Кардано сознательно допускает такой абсурд и приступает к действиям над этими «мнимыми» числами.

Всякий объявил бы это чистым безумием, и тем не менее всё развитие алгебры и анализа было бы невозможным без этого отправного положения, которое, естественно, получило в XIX веке твёрдое и строгое обоснование. С тех пор стало возможным утверждать, что наиболее короткий и наилучший путь между двумя истинами в действительной области часто проходит через мнимую область. [Замечательное высказывание! — E.G.A. ]

Мы упоминаем о Кардано одновременно с Сократом и Нумой Помпилием, так как некоторые из его биографов сообщают, что были и в его жизни периоды, когда таинственный голос что-то внушал ему. Но свидетельства на этот счёт не лишены противоречий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жак Адамар читать все книги автора по порядку

Жак Адамар - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Исследование психологии процесса изобретения в области математики отзывы


Отзывы читателей о книге Исследование психологии процесса изобретения в области математики, автор: Жак Адамар. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x