Жак Адамар - Исследование психологии процесса изобретения в области математики

Тут можно читать онлайн Жак Адамар - Исследование психологии процесса изобретения в области математики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Психология, издательство Советское радио, год 1970. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Исследование психологии процесса изобретения в области математики
  • Автор:
  • Жанр:
  • Издательство:
    Советское радио
  • Год:
    1970
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Жак Адамар - Исследование психологии процесса изобретения в области математики краткое содержание

Исследование психологии процесса изобретения в области математики - описание и краткое содержание, автор Жак Адамар, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В настоящее время в связи с задачами эвристического программирования возрос интерес к анализу творческого мышления человека. В книге, автор которой — один из видных математиков нашего столетия, подробно рассмотрен процесс творчества, преимущественно математиков. Особое внимание уделено роли подсознания в процессе творчества. Книга представляет интерес для математиков, кибернетиков, психологов и широкого круга читателей.

Исследование психологии процесса изобретения в области математики - читать онлайн бесплатно полную версию (весь текст целиком)

Исследование психологии процесса изобретения в области математики - читать книгу онлайн бесплатно, автор Жак Адамар
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Есть ещё одно замечание по поводу условий этой бессознательной работы: она возможна или, по крайней мере, плодотворна лишь в том случае, когда ей предшествует и за ней следует сознательная работа. Приведённый мной пример подтверждает в достаточной мере, что эти внезапные вдохновения происходят лишь после нескольких дней сознательных усилий, которые казались абсолютно бесплодными, когда предполагаешь, что не сделано ничего хорошего и когда кажется, что выбран совершенно ошибочный путь. Эти усилия, однако, не являются бесполезными, как можно подумать; они пустили в ход бессознательную машину, без них она не пришла бы в действие и ничего бы не произвела.

Необходимость второго периода сознательной работы после озарения ещё более понятна. Нужно использовать результаты этого озарения, вывести из них непосредственные следствия, привести в порядок, отредактировать доказательство. Но особенно необходимо их проверить. Я вам уже говорил о чувстве абсолютной уверенности, которое сопровождает озарение; в рассказанных случаях оно не было ошибочным и чаще всего так и бывает; но следует опасаться уверенности, что это правило без исключения; часто это чувство нас обманывает, не становясь от этого менее ярким, и заметить обман можно лишь при попытке строго сознательно провести доказательство. Особенно часто я наблюдал такие факты, когда идеи приходят в голову утром или вечером в постели, в полусонном состоянии.

Таковы факты; рассмотрим теперь выводы, которые отсюда следуют. Как вытекает из предыдущего, или моё «бессознательное я» или, как это называют, моё подсознание, играет основную роль в математическом творчестве. Но обычно рассматривают подсознательные процессы как явления чисто автоматические. Мы видим, что работа математика не является просто механической и её нельзя было бы доверить машине, сколь бы совершенной она ни была. Здесь дело не только в том, чтобы применять правила и создавать как можно больше комбинаций по некоторым известным законам. Комбинации, полученные таким образом, были бы слишком многочисленными, громоздкими и бесполезными. Истинная работа учёного состоит в выборе таких комбинаций, чтобы заведомо исключить бесполезные или, вернее, даже не утруждать себя их созданием. И правила, которыми нужно руководствоваться при этом выборе, предельно деликатны и тонки, их почти невозможно выразить точными словами; они легче чувствуются, чем формулируются; как можно при таких условиях представить себе аппарат, который их применяет автоматически?

Отсюда перед нами возникает первый вопрос: «я подсознательное» нисколько не является низшим по отношению к «я сознательному», оно не является чисто автоматическим, оно способно здраво судить, оно имеет чувство меры и чувствительность, оно умеет выбирать и догадываться. Да что говорить, оно умеет догадываться лучше, чем «я сознательное», так как преуспевает там, где последнее потерпело неудачу. Короче, не стоят ли мои бессознательные процессы выше чем моё сознание?

Вы понимаете важность моего вопроса. Э. Бутру показал в докладе, сделанном здесь же два месяца назад, как этот вопрос возникает при совершенно других обстоятельствах и какие следствия вытекают из утвердительного ответа. Не вытекает ли такой утвердительный ответ из фактов, которые я только что вам изложил? Я утверждаю, что не могу с этим согласиться. Итак, исследуем ещё раз факты и посмотрим, не содержат ли они другого объяснения.

Несомненно, что комбинации, приходящие на ум в виде внезапного озарения после достаточно длительной бессознательной работы, обычно полезны и глубоки, как будто они прошли уже первый отбор. Значит ли это, что подсознание образовало только эти комбинации, интуитивно догадываясь, что лишь они полезны, или оно образовало и многие другие, которые были лишены интереса и остались неосознанными?

При этой второй точке зрения все комбинации формируются механизмом подсознания, но в поле зрения сознания попадают лишь представляющие интерес. Но и это ещё очень непонятно. Каковы причины того, что среди тысяч результатов деятельности нашего подсознания есть лишь некоторые, которые призваны пересечь его порог, в то время как все прочие остаются по ту сторону? Не просто ли случай даёт им эту привилегию? Конечно, нет. К примеру, среди всех ощущений, действующих на наши органы чувств, только самые интенсивные обращают на себя наше внимание, по крайней мере, если это внимание не обращено на них по другим причинам. В более общем случае среди бессознательных идей привилегированными, т. е. способными стать сознательными, являются те, которые прямо или косвенно наиболее глубоко воздействуют на наши чувства.

Может вызвать удивление обращение к чувствам, когда речь идёт о математических доказательствах, которые, казалось бы, связаны только с умом. Но это означало бы, что мы забываем о чувстве математической красоты, гармонии чисел и форм, геометрической выразительности. Это настоящее эстетическое чувство, знакомое всем настоящим математикам. Воистину, здесь налицо чувство!

Но каковы математические характеристики, которым мы приписываем свойства красоты и изящества и которые способны возбудить в нас своего рода эстетическое чувство? Это те элементы, которые гармонически расположены таким образом, что ум без усилия может их охватывать целиком, угадывая детали. Эта гармония служит одновременно удовлетворением наших эстетических чувств и помощью для ума, она его поддерживает и ею он руководствуется. Эта гармония даёт нам возможность предчувствовать математический закон. Итак, как это было сказано выше, единственными фактами, способными обратить на себя наше внимание и быть полезными, являются те, которые подводят нас к познанию математического закона. Таким образом, мы приходим к следующему выводу: полезные комбинации — это в точности наиболее красивые, т. е. те, которые больше всего воздействуют на это специальное чувство математической красоты, известное всем математикам и недоступное профанам до такой степени, что они часто склонны смеяться над ним.

Что же, таким образом, происходит? Среди многочисленных комбинаций, образованных нашим подсознанием, большинство безынтересно и бесполезно, но потому они и не способны подействовать на наше эстетическое чувство; они никогда не будут нами осознаны; только некоторые являются гармоничными и потому одновременно красивыми и полезными; они способны возбудить нашу специальную геометрическую интуицию, которая привлечёт к ним наше внимание и таким образом даст им возможность стать осознанными.

Это только гипотеза, но есть наблюдение, которое её подтверждает: внезапное озарение, происходящее в уме математика, почти никогда его не обманывает, но иногда случается, что оно не выдерживает проверки, и тем не менее почти всегда замечают, что если бы эта ложная идея оказалась верной, то она удовлетворила бы наше естественное чувство математического изящества.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жак Адамар читать все книги автора по порядку

Жак Адамар - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Исследование психологии процесса изобретения в области математики отзывы


Отзывы читателей о книге Исследование психологии процесса изобретения в области математики, автор: Жак Адамар. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x