Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
• входы ОУ не потребляют тока (входное сопротивление ОУ практически равно бесконечности, точнее — увеличивается по сравнению с ОУ без обратной связи в Кβ раз);
• ОУ с отрицательной обратной связью всегда «стремится» сделать так, чтобы потенциалы на его входах были равны между собой.
Характеристики конкретной схемы определяются соотношением собственного коэффициента усиления ОУ и коэффициента передачи системы с замкнутой обратной связью — чем выше это соотношение, тем ближе схема к идеалу. Интересно, что если на практике для обеспечения фактической независимости коэффициента усиления схемы от характеристик ОУ достаточно иметь собственный коэффициент усиления всего в несколько тысяч, то для получения, например, действительно высокого входного сопротивления (измеряемого гигаомами и выше), приходится увеличивать К до указанных величин в сотни тысяч и более.
Отметим также сразу, что введение обратной связи в указанной выше степени Уменьшает и выходное сопротивление всего усилителя, которое становится очень близким к нулю — точнее, примерно равным R вых/(1 + Кβ ), где R вых— собственное выходное сопротивление ОУ, лежащее обычно в диапазоне сотен ом. Так что выходное сопротивление получается порядка 1 миллиома. Только не забывайте, что мощность выходного каскада ограничена, и если вы его перегрузите, то от падения напряжения на нагрузке вас уже никакая обратная связь, естественно, не спасет: ОУ просто не сможет отдать того тока, который требуется. Это ограничивает величину сопротивления нагрузки рядовых ОУ на уровне порядка килоом. Меньшие нагрузки обычно допустимы (вплоть до к. з.), но обратная связь уже работать не будет.
Заметки на полях
Из изложенных ранее рассуждений относительно экономической модели обратной связи ясно, что система с обратной связью может быть неустойчивой. Обсуждение теории устойчивости таких систем (скажем, известного метода Найквиста) увело бы нас слишком далеко, однако практические меры в основном сводятся к тому, чтобы ограничить коэффициент усиления исходной системы и/или глубину обратной связи на таких частотах, когда отрицательная обратная связь начинает превращаться в положительную. Другими словами, при амплитуде сигнала обратной связи, равной или большей значения входного сигнала, фазовый сдвиг между ними не должен достигать 180° (поглядите на графики суммирования синусоидальных сигналов в главе 2, чтобы лучше понять, в чем тут дело). Причем наибольшую опасность несет в себе режим с установленным коэффициентом усиления, равным единице (т. е. включение ОУ по схеме повторителя), т. к. на вход поступает большая часть выходного сигнала. Роберт Видлар был сторонником того, чтобы переложить заботу о коррекции на плечи пользователей, и первые его конструкции ОУ, например, μА702, выпускавшийся в нашей стране под названием 140УД1 [2] Префикс «К» в названии отечественных микросхем, обозначающий их принадлежность к бытовому/коммерческому диапазону температур, мы будем в этой книге опускать, подробнее см. главу 8 .
или получивший широкую известность μА709, имели специальные выводы для коррекции с помощью внешних резисторов и конденсаторов. Практически же этим никто не пользовался (подобно тому, как подавляющее большинство пользователей компьютерных программ работает с установками, введенными в них разработчиками по умолчанию) и такая возможность только приводила к необходимости введения в схему лишних компонентов, так что в настоящее время выводы для внешней коррекции сохранились лишь для некоторых моделей высокочастотных ОУ, где полоса частот действительно является критичным фактором.
Кстати, а каковы в свете всего изложенного могут быть рекомендации нашим предпринимателям из производственной фирмы? Они совершенно аналогичны методам для обеспечения стабильности ОУ: нужно ограничить глубину обратной связи и коэффициент усиления на высоких частотах. Проще говоря, им следует при наличии запаздывания не пытаться реагировать на каждый проданный или непроданный экземпляр, а выпускать некое среднее количество в сутки, изменяя его только, когда изменился средний объем продаж за промежуток времени, значительно больший суток — это и равносильно ограничению усиления на высоких частотах.
Базовые схемы усилителей на ОУ
Анализ схемы неинвертирующего усилителя (рис. 6.7, а ) элементарно прост: исходя из приведенных правил U oc= U вх, т. е. U вх= U вых∙R2/(R1 + R2). Тогда коэффициент усиления К ус= U вых/ U вх= (R1 + R2)/R2 = 1 + R1/R2.
Единица, которая плюсуется к отношению резисторов обратной связи в выражении для коэффициента усиления — очень важное дополнение, потому что если убрать в схеме неинвертирующего усилителя резистор R2 (т. е. принять его равным бесконечности), то отношение резисторов станет равным нулю, а К ус— равным единице. Соответствующая схема, показанная на рис. 6.7, в , и есть тот самый повторитель, которого так «боялся» Видлар. Зачем она нужна, если ничего не усиливает? Эта схема обладает одним бесценным свойством: ее входное сопротивление равно практически бесконечности, а выходное — нулю (в пределах, конечно, мощности выходного каскада, как мы уже говорили). Поэтому повторитель очень часто используют в случаях, когда нужно согласовать источник сигнала с высоким выходным сопротивлением с низкоомным приемником.
Рис. 6.7. Базовые схемы на ОУ:
a— неинвертирующий усилитель; б— инвертирующий усилитель; в— повторитель; г— инвертирующий усилитель с высоким коэффициентом усиления
В неинвертирующем усилителе обратная связь носит название «обратной связи по напряжению». В отличие от него, в инвертирующем усилителе (рис. 6.7, б ) обратная связь имеет характер «обратной связи по току», и вот почему. Так как здесь неинвертирующий вход имеет потенциал «земли», то и инвертирующий тоже всегда будет иметь такой же потенциал . Будем считать, что питание у нас нормальное, симметрично-двуполярное. Тогда если в схеме рис. 6.7, б инвертирующий вход имеет всегда потенциал «земли», то от входа через резистор R2 потечет некий ток ( I вх). Так как мы договорились, что сам вход ОУ тока не потребляет, то этот ток должен куда-то деваться, и он, в полном соответствии с первым законом Кирхгофа, потечет через резистор R1 на выход ОУ. Таким образом, входной ток ( I вх) и ток обратной связи ( I ос) — это один и тот же ток. Причем потенциал выхода ОУ вынужденно станет противоположным по знаку потенциалу входа, иначе току некуда будет течь. Кстати, подавать именно нулевой потенциал на неинвертирующий вход совершенно необязательно, например, если у вас однополярный источник питания, то на неинвертирующий вход подается потенциал «искусственной средней точки».
Читать дальшеИнтервал:
Закладка: