Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чему равен коэффициент усиления такой схемы? Так как U вх/R2 = U вых/R1, то К ус= U вых/ U вх= R1/R2. Без всяких дополнительных единиц, как в неинвертирующей схеме, т. е. R2 в данном случае есть необходимый элемент схемы и не может быть равным ни нулю (тогда вход ОУ просто замкнет выход источника на «землю»), ни бесконечности — за исключением того случая, если источник сигнала сам по себе представляет источник тока, а не напряжения. Вот тогда R2 из схемы можно (и нужно) исключить и подать токовый сигнал прямо на вход ОУ.
Заметьте, кстати, что похожее выражение для коэффициента усиления мы получали при рассмотрении транзисторного усилительного каскада (рис. 3.7), где усиление было равно отношению коллекторной нагрузки к сопротивлению в эмиттерной цепи. Это обусловлено тем, что в транзисторном каскаде также имеет место обратная связь (см. главу 3 ).
Подробности
Максимальное значение входного и выходного напряжений ОУ не всегда может быть равно положительному или отрицательному напряжению питания (как правило, оно меньше его на величину порядка 0,5–1,5 В). Однако многие современные изделия это все же позволяют и допустимое выходное (входное) напряжение у них достигает значений напряжения питания. Это свойство в западной технической документации обозначается как Rail-to-Rail (т. е. «от шины до шины») и на него нужно обращать внимание при выборе ОУ.
Если входное сопротивление неинвертирующего усилителя равно практически бесконечности, то у инвертирующего оно почти в точности равно R2.
Но входы реального ОУ все же потребляют ток, хотя и очень небольшой (называемый током смещения ). Ток смещения на инвертирующем входе (в любой из двух схем) создаст падение напряжения на резисторе обратной связи и оно воспринимается как часть входного сигнала: если этот ток равен, к примеру, 0,2 мкА (казалось бы — так мало!), то при сопротивлении R1 = 1 МОм напряжение на выходе при отсутствии напряжения на входе достигнет 0,2 В. Как обычно, в подобных случаях важно не само по себе смещение, а его температурная нестабильность. Борьба с этим явлением может вестись в трех направлениях: во-первых, не следует использовать в цепочке обратной связи сопротивления большого номинала, стандартный диапазон их — от килоом до десятков килоом. Если же при необходимости сохранить достаточно высокое входное сопротивление инвертирующего усилителя при большом коэффициенте усиления применение высокоомных резисторов желательно, то предпочтительнее схема, показанная на рис. 6.7, г . В данном случае вся цепочка в обратной связи работает, как один резистор с номинальным сопротивлением 5,1 МОм, и коэффициент усиления равен 100 при входном сопротивлении 50 кОм.
Во-вторых, в схему следует вводить компенсирующий резистор R к(на рис. 6.7, a-в он показан пунктиром) — падение напряжения от тока смещения по неинвертирующему и инвертирующему входам на нем отчасти компенсируются. Тогда будет уже не столь важен сам ток смещения, сколько разница их, потребляемых по каждому из входов усилителя, которая определенно меньше каждого из токов. Кроме токов смещения, на работу реального ОУ влияет и т. н. напряжение сдвига , обусловленное неидентичностью параметров входных каскадов.
На практике, если эти явления критичны (а это далеко не всегда так), стоит подобрать более дорогой, но и более точный прецизионный ОУ. К рядовым «ширпотребовским» типам ОУ относятся старинные, но до сих пор производящиеся 140УД7 (μА741), 140УД20 (dial — сдвоенный, т. е. содержащий два ОУ в одном корпусе), LM321 (single — одинарный), LM358 (также сдвоенный), LM324 (quad — счетверенный). При этом обычные усилители (LM321, LM324, LM358) имеют широчайший диапазон напряжений питания (до ±16 В). Существует их модификация, выпускающаяся фирмой MAXIM/DALLAS, с добавлением буквы X к названию (LMX321), у которой напряжение питания снижено всего до 7 В (суммарно), однако выходное напряжение имеет полный размах (Rail-toRail) — фактически это совсем другие ОУ. Такие нюансы нередки, потому встретив знакомую микросхему, но с незнакомым индексом, обязательно следует проверить ее характеристики по документации на сайте производителя, иначе можно крупно «пролететь».
К прецизионным ОУ относятся, например, надежные и удобные МАХ478 (сдвоенный) и МАХ479 (счетверенный), также отличающиеся исключительно широким диапазоном допустимых напряжений питания: от ±2,2 до ±18 В. Они имеют высокие показатели по точности, но работают очень медленно и не допускают полного размаха напряжений по выходу. В настоящее время эти микросхемы не выпускаются (хотя их еще можно спокойно приобрести), причем адекватной замены у фирмы MAXIM нет, и лучше употреблять аналогичные изделия других фирм, например, серию AD820—AD824 фирмы Analog Devices, которая существенно быстрее и к тому же имеет полный Rail-to-Rail размах напряжения по выходу. По цоколевке они (как и большинство других ОУ) полностью взаимозаменяемы при условии идентичности корпуса. МАХ4236 — пример прецизионного усилителя, который работает при напряжениях питания до 5,5 В, зато с полным Rail-to-Rail размахом напряжения по выходу, что хорошо стыкуется с цифровыми схемами, сейчас таких ОУ выпускается очень много. Особо высокими характеристиками, в том числе по быстродействию, отличаются относительно дорогие ОУ с цифровой стабилизацией: отечественный 149УД24, а также МАХ420, МАХ430, ICL7652 и др.
Дифференциальные усилители
Кроме всего прочего, ОУ имеют замечательное свойство подавлять синфазный входной сигнал. Синфазный сигнал , в отличие от обычного, дифференциального — это напряжение, которое действует на оба входа сразу (см. также главу 3 ). Это свойство приводит не только к возможности выделять полезный сигнал на фоне значительных наводок, но и, что иногда еще важнее, к подавлению нестабильности источника питания, поскольку изменение напряжения питания равносильно действию синфазного входного сигнала.
На рис. 6.8, а показана схема простейшего дифференциального усилителя . Делитель R3, R4 по неинвертирующему входу служит сразу двум целям: во-первых, он выравнивает входные сопротивления по входам (нетрудно показать, что т. к. потенциалы самих входов ОУ равны, то будут равны и входные сопротивления, естественно, при указанном на схеме равенстве соответствующих резисторов), во-вторых, что еще важнее, он делит входной сигнал в таком соотношении, чтобы коэффициенты усиления по инвертирующему и неинвертирущему входам сравнялись между собой. Именно при этом условии коэффициент ослабления синфазного сигнала (КОСС) будет максимальным. Для того чтобы получить действительно высокий КОСС (ослабление синфазного сигнала ~10 000 раз, т. е. на 80 дБ, о децибелах см. далее), согласование сопротивлений должно быть как можно более точным, и в такой схеме следует применять прецизионные резисторы из ряда с погрешностью, не превышающей, по крайней мере, 0,1 %, причем лучше всего их еще и дополнительно подобрать по строгому равенству номиналов. Тогда вы действительно сможете без проблем выделить полезный сигнал в 1 мВ на фоне наводки в 1 В.
Читать дальшеИнтервал:
Закладка: