Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Когда сетевое напряжение поступает на нагрузку (неважно, через тумблер или контакты реле), горит включенная параллельно ей неоновая лампочка Н1, по которой можно контролировать работу схемы. Лампочка может быть любого типа, только при этом резистор R8 должен иметь мощность не менее 0,5 Вт, т. к. он работает при сетевом напряжении (обычные резисторы 0,125—0,25 Вт имеют предельно допустимое напряжение порядка 200 В). Отметим, что ставить светодиод здесь неудобно: нужно либо выбирать двухцветный встречно-паралельный, либо ставить выпрямительный мост, и мощность резистора придется еще больше увеличить — потребуется как минимум 1 Вт при сопротивлении 68 кОм, и он будет заметно греться.
Симисторное реле PF240D25 (разводка его выводов на схеме не показана, все нарисовано прямо на корпусе) в принципе допускает ток до 25 А, однако Достаточно сильно греется уже при 10 А. Поэтому допустимую мощность ТЭНа лучше ограничить величиной 2 кВт, а в корпусе устройства сверху и снизу обязательно нужно предусмотреть вентиляционные отверстия. При этом реле К1 в рабочем положении корпуса должно быть расположено выше остальных деталей.
Если вы хотите добиться большей мощности, то лучше выбрать аналогичное реле типа D2425, которое имеет отверстия для установки на дополнительный радиатор. Электромагнитное реле ставить здесь не рекомендуется: придется включать мощное реле-пускатель через промежуточное реле, и они совместно отнюдь не будут услаждать ваш слух своим грохотом и жужжанием. А вот реле К2 и КЗ вполне можно заменить на маломощные электромеханические — например типа РЭС-60 или РЭС-49. Естественно, резисторы R6 и R7 в этом случае не нужны, а вот у конденсатора С2, возможно, придется раза в два увеличить емкость для более надежного включения устройства.
В положении тумблера S1 «Автомат» сетевое напряжение поступает на простейший нестабилизированный блок питания (квадрат с надписью БГ1 на схеме рис. 6.11), схема которого не расшифрована, потому что полностью соответствует показанной на рис. 4.2. Как обычно, такую конструкцию можно извлечь из покупного блока со встроенной вилкой, мощности от него никакой не требуется (вся схема потребляет ток порядка 30 мА), поэтому можно выбирать любой на напряжение (под номинальной нагрузкой) от 10 до 15 В. Напряжение с него поступает на стабилизатор типа LM78L09 (в корпусе ТО-92, можно заменить на отечественный 142ЕН8Б или на аналогичный иного производителя), откуда стабилизированное напряжение +9 В подается на схему. Светодиод VD2 сигнализирует о включении схемы автоматики, его лучше выбрать зеленого свечения, чтобы обеспечить контраст с неоновой лампочкой.
Заметки на полях
Самое сложное в процессе изготовления устройства — обеспечить надежную и долговечную изоляцию термистора от воды, но с сохранением хорошего теплового контакта. Хороший вариант — залить термистор в металлической трубочке эпоксидной смолой, прямо вместе с пайками к удлинительным проводам (последние дополнительно изолируются термоусадочной трубкой). Только при этом не следует забывать, что сама по себе эпоксидная смола не водостойка, а металл может корродировать. Такую конструкцию необходимо дополнительно покрыть каким-нибудь надежным и не выделяющим вредных веществ водостойким составом, вроде полиуретановых лаков или автомобильных эмалей горячей сушки. Другой вариант — «запечатать» датчик в зубную пластмассу (для чего может понадобиться помощь знакомого дантиста).
При указанных на схеме номиналах термостат обеспечивает установку заданной температуры в диапазоне примерно 35–85°. При термисторе с другим сопротивлением придется только пропорционально изменить номинал R1, больше ничего менять в схеме не надо. Настройка и калибровка схемы ничем не отличается от таковых для регулятора оборотов, кроме выбора диапазона температур. При настройке основную нагрузку можно не подсоединять, т. к. момент срабатывания и отключения вполне можно контролировать по неоновой лампочке, следует только учесть, что вовсе без нагрузки «неонка» может гореть даже при выключенном реле — из-за токов утечки через «контакты» (на самом деле там стоит тиристор, у которого ток утечки может достигать 10 мА) и вам даже может показаться, что система не работает. Если гак, то придется все же подключить какую-то нагрузку, например лампочку накаливания. В процессе калибровки надо обязательно обеспечить хорошее перемешивание воды!
Заметки на полях
Я настоятельно рекомендую теплоизолировать бак для воды, даже в отсутствие регулятора: просто обернув его старым ватным одеялом, вы можете экономить до 70–90 % электроэнергии. Это касается не только данной конструкции, но и вообще всех водонагревателей. Можно сделать и «фирменную» теплоизоляцию из упаковочного пенопласта.
В заключение отметим, что схемы для построения термостатов невысокого класса, подобных двум описанным, существуют, разумеется, и в интегральном исполнении, обычно они при этом совмещены с полупроводниковым датчиком температуры, который часто имеет и отдельный выход, что обеспечивает возможность измерения температуры.
На этом мы с рассмотрением ОУ закончим и займемся звуком — это еще одна область, где аналоговые микросхемы доминируют над цифровыми (хотя и не всегда, как вы увидите в дальнейшем).
В основе большинства усилителей звукового диапазона, предназначенных для работы на динамические громкоговорители-колонки (такие усилители часто именуют УМЗЧ — «усилитель мощности звуковой частоты», а кроме них, есть еще микрофонные, предварительные и тому подобные усилители, которые мы не будем здесь рассматривать), независимо от того, выполнены ли они на дискретных элементах, или в виде интегрального модуля, всегда лежит одна и та же базовая схема. В одном из упрощенных вариантов ее можно представить так, как показано на рис. 6.12. Разбирать мы ее подробно не будем, остановимся лишь на ключевых моментах, которые имеют значение для понимания работы интегральных усилителей.
Рис. 6.12. Классическая базовая схема усилителя звуковой частоты
Вход почти любого УМЗЧ, как и вход ОУ, представляет собой дифференциальный каскад. Так как звуковой сигнал в идеале является симметричной синусоидой, с которой удобно работать при симметричном двуполярном питании, то входной сигнал должен находиться где-то посередине между напряжениями питания. Чтобы обеспечить развязку по постоянному току, сигнал на вход обычно подают через фильтр высокой частоты (С1 и R1, в некоторых случаях обходятся и одним конденсатором).
На второй вход дифференциального каскада при этом подают сигнал обратной связи, стабилизирующий характеристики усилителя (в данном случае — через сопротивление R5). Если усилитель интегральный, то обратную связь большей частью выносят вовне микросхемы, т. к. она обычно требует регулируемой коррекции (на схеме конденсатор С2) — ограничения усиления на высоких частотах, иначе готовый усилитель может «загудеть». При указанных на схеме соотношениях R5/R4 коэффициент усиления по напряжению устанавливается примерно равным 30, что позволяет усилить обычный выходной сигнал линейного выхода магнитолы или тюнера (0,7 В) до амплитуды, необходимой для «раскачки» мощной нагрузки.
Читать дальшеИнтервал:
Закладка: