Юрий Ревич - Занимательная микроэлектроника

Тут можно читать онлайн Юрий Ревич - Занимательная микроэлектроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная микроэлектроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-0080-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная микроэлектроника краткое содержание

Занимательная микроэлектроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная микроэлектроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оконечный каскад усиления мощности всех таких усилителей представляет собой т. н. «пушпульный» (от push-pull — «тяни-толкай», по-русски) каска/, на паре комплементарных (т. е. «дополняющих друг друга») транзисторов имеющих близкие характеристики, но разную полярность ( n-р-n и р-n-р ) На схеме вы видите довольно мощные приборы фирмы MotoroU BDW93C/BDW94C (до 80 Вт), но существует много подобных пар отечест венного производства: совсем «древних» КТ315/КТ361, маломощны? КТ3102/КТ3107, средней мощности КТ815/КТ814, КТ817/КТ816, КТ972/КТ97: (с «супербетой»), наконец, более мощных КТ819/КТ818. Изредка использую и специальные пары мощных полевых транзисторов.

Чаще такой каскад встроен в микросхему, но иногда целесообразно «умощнить» выход интегрального усилителя дискретными транзисторами (или в характеристиках микросхемы это прямо рекомендуется). По сути «пушпульный» каскад есть просто два эмиттерных повторителя разной полярности, работающих на одну нагрузку. При этом надо не забывать про падения напряжения «база-эмиттер», из-за чего каскад должен всегда иметь начальный сдвиг, приоткрывающий оба транзистора и обеспечивающий небольшой сквозной ток через них. На данной схеме для этого служит цепочка диодов.

Замечание

Иногда встречаются и более сложные способы, причем для лучшей температурной стабильности каскада следует эти диоды располагать в контакте с радиатором мощных транзисторов. Если этого не делать, то возможен самопроизвольный выход транзисторов из строя — температурный коэффициент напряжения «база-эмиттер» отрицателен, и по мере нагревания транзисторы будут все больше «распахиваться», в свою очередь нагревая себя еще сильнее — вплоть до выгорания. В более сложных схемах такое удается предотвратить и иными способами.

Если смещения не делать, то выходное напряжение будет иметь искажения типа «ступенька» — из входной синусоиды за счет зоны нечувствительности в пределах ±0,6 В для обычных транзисторов (±1,2 В для транзисторов с «су-пербетой», т. н. «дарлингтоновских», состоящих из двух транзисторов, включенных последовательно) как бы вырезается «кусок» вблизи нулевого уровня.

За остальными подробностями я отправлю вас к классическим трудам [6] и [7], а мы займемся практическими конструкциями. Но сначала для общего образования рассмотрим одну единицу измерения, которая часто встречается при описании подобных схем.

О децибелах

В разговоре о таких вещах, как звуковые усилители, децибелы обойти нельзя. Децибел (одна десятая белла , названного так по имени изобретателя телефона А. Белла) есть единица измерения отношений величин. Перевести отношение в децибелы и обратно можно по формуле: К (дБ) = 20∙lg( A 1/ A 0), где A 1/ A 0есть отношение значений некоторых величин (напряжений, токов, звукового Давления и т. п.).

Децибелы удобны для характеристики изменения величин, меняющихся по степенному закону, их широко используют при расчетах фильтров, анализе частотных и амплитудных характеристик ОУ, или, скажем, в таких случаях, как измерение уровня звукового давления. График степенной функции, которая быстро возрастает или падает в обычных координатах, в широком диапазоне значений практически невозможно изобразить, а в логарифмическом масштабе (в децибелах) он будет выглядеть прямой линией (это часто ветречающиеся графики, где по осям отложены величины, возрастающие не линейно, а в геометрической прогрессии: 1, 10, 100, 1000…). Звуковое давление практически всегда измеряют в децибелах (относительно порога слышимости) — это связано с тем, что наше ухо реагирует именно на отношение громкостей, а не их абсолютный прирост.

Если отношение величин больше единицы, то величина в децибелах будет положительной, если меньше — отрицательной. Для перевода децибел в обычные относительные единицы и обратно необязательно выполнять расчет по указанной ранее формуле, достаточно запомнить несколько простых соотношений:

• 3 дБ соответствует увеличению/уменьшению на треть;

• 6 дБ соответствует отношению в 2 раза;

• 10 дБ соответствует отношению в 3 раза;

• 20 дБ соответствует отношению в 10 раз.

Руководствуясь этими соотношениями, легко перевести любую величину: например, 73 дБ есть 20 + 20 + 20 + 10 + 3 дБ, т. е. 10∙10∙10∙3∙1,33 = 4000. Собственный коэффициент микросхемы звукового усилителя TDA2030 (см. далее) равен 30000, т. е. 3-104, или 10 + 4-20 = 90 дБ, а простейшей схемы но рис. 6.12 — около 66 дБ (2000). Коэффициент ослабления синфазного сигнала (КОСС), о котором шла речь ранее, также чаще всего измеряют в децибелах: так, его величина, равная -60 (3-20) дБ, означает, что синфазный сигнал ослабляется в 1000 раз. Крутизна характеристик простейших RC-фильтров низкой и высокой частоты из главы 2 равна, соответственно, — 6 и +6 дБ на октаву, что означает уменьшение/увеличение сигнала в 2 раза при двукратном изменении частоты.

Мощный УМЗЧ

Вооружившись такой терминологией, мы стали совсем умными, и можем приступить к делу. Первой разберем стандартную схему УМЗЧ на популярной микросхеме TDA2030 производства фирмы ST Microelectronics (рис. 6.13). В ней производитель гарантирует при выходной мощности 14 Вт на нагрузке 4 Ом искажения сигнала не более 0,5 %. Если снизить требования к величине искажений, то при ±15 В питания из микросхемы можно «выжать» до 20 Вт. Предельно допустимое значение напряжения питания для TDA2030 достигает ±18 В (или 36 В однополярного), но, разумеется, при таком питании ее эксплуатировать не рекомендуется. Увеличение искажений при повышении выходной мощности, вероятно, связано с тем, что в чип встроена защита от перегрева выходных транзисторов, которая ограничивает выходной ток, когда температура корпуса повышается.

Рис. 6.13. Рекомендуемая схема усилителя звуковой частоты на микросхеме TDA2030

Производитель гарантирует такие характеристики, как диапазон частот, которые передаются с заданным коэффициентом усиления и при заданных искажениях сигнала (40 Гц — 15 кГц), и коэффициент подавления влияния нестабильности источника питания на качество выходного сигнала (в 100–300 раз), что допускает питание от простейшего нестабилизированного источника (см. рис. 4.4). При указанных номиналах резисторов и конденсаторов устойчивость усилителя гарантируется и даже приводятся рекомендации по размерам охлаждающего радиатора.

Собственно усилитель включает саму микросхему DA1, конденсаторы С1, С2 и резисторы R1 — R4. Если внимательно присмотреться к этой схеме, то мы увидим, что структурно она ничем не отличается от нашей базовой схемы (см. рис. 6.12). Мало того, здесь даже установлен с помощью обратной связи тот же самый коэффициент усиления, примерно равный 30. Как будто взяли нашу схему и упаковали ее в отдельный корпус, обеспечив вывод наружу входов дифференциального усилителя, выхода двухтактного (push-pull) каскада усиления мощности и, естественно, выводов питания. На самом деле характеристики «фирменного» усилителя заметно выше: в микросхеме TDA2030 коэффициент усиления по напряжению при разомкнутой цепи обратной связи, согласно документации производителя, равен примерно 30 000, а в предыдущей схеме он не более 2000–2500. Это, конечно, для «фирменной» схемы значительно увеличивает линейность усиления и уменьшает уровень искажений, аналогично работе обратной связи в ОУ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная микроэлектроника отзывы


Отзывы читателей о книге Занимательная микроэлектроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x