Александр Кульский - КВ-приемник мирового уровня? Это очень просто!
- Название:КВ-приемник мирового уровня? Это очень просто!
- Автор:
- Жанр:
- Издательство:Наука и техника
- Год:2007
- Город:Санкт-Петербург
- ISBN:5-7931-0096-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Кульский - КВ-приемник мирового уровня? Это очень просто! краткое содержание
Да и микросхемы большого уровня интеграции, поверьте, мало чем могут помочь для развития у радиолюбителя умения «читать» любые схемы… Необходима такая область, такое направление электроники, которое, обеспечивая накопления бесценного опыта в конструировании, имело бы и самостоятельную ценность.
Такая область существует — это создание высокочувствительных (как коротковолновых, так и всеволновых) приемников, основанных на современной профессиональной идеологии создания подобной аппаратуры.
От азов электроники и радиотехники — к современному высокочувствительному супергетеродинному приемнику с двойным преобразованием частот и верхней первой ПЧ… Оснащенному высокоэффективной цифровой шкалой настройки — вот о чем эта книга! Те, кто хочет самостоятельно изготовить и отладить приемник мирового уровня — эта книга для вас!
КВ-приемник мирового уровня? Это очень просто! - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
«А»:Разъемы типа BNC (байонет) очень распространены. Их насчитывается десятки видов! Какие модификации найдут непосредственное применение в нашей разработке?
«С»:Вообще самые распространенные — это пара: СР-50-74 ПВ и СР-50-73 ФВ, рассчитанные на применение кабелей с внешним диаметром 3,5 мм. Но для нас наиболее предпочтительными являются такие пары, как: СР-50-104 ФВ и СР-50-103 ФВ или подобные им. Они рассчитаны на кабели с внешним диаметром 2,5 мм.
Ну вот, пожалуй и все по общим вопросам!
«Н»:Теперь можно перейти к схемотехнике?
«С»:Да, если бы не одна «мелочь». А именно, чем вы, друзья мои, собираетесь запитывать макет, а затем и конструктивно оформленные блоки радиоприемника?
«Н»:То есть необходим некий блок питания? А какое выходное напряжение он должен выдавать?
«А»:Полагаю, Незнайкин, что Н И КАКИМ одним выходным напряжением мы не обойдемся!
«С»:Правильная мысль! Давайте прикинем: для питания ОУ, а они у нас явно найдут применение, необходимо симметричное (как «+», так и «-») напряжение 15 вольт. Или, по меньшей мере, симметричное напряжение 10 вольт! Затем напряжение для ЦОУ. Его величина составляет + 7,5 вольт. Затем, относительно высокое напряжение для варикапов +30 вольт. Для питания усилителей, гетеродинов, преобразователей и наконец, УНЧ (усилителя низкой частоты) — тоже необходимо симметричное напряжение 15 вольт.
«А»:То есть необходимы, как минимум, ТРИ напряжения относительно мощных, способных отдать ток до 300 мА. И одно напряжение (для запитки варикапов), имеющее крайне незначительную токовую нагрузку.
«С»:Действительно, сами варикапы тока, практически, не потребляют! Но стабилизатор, запитывающий варикапы, некоторый ток все же потребляет. А поскольку напряжение на варикапы подается с движка многооборотного переменного резистора ППМЛ-1И, то важен номинал этого резистора. Наиболее предпочтителен номинал 22 кОм. Следовательно, ток потребляемый этим резистором, — около 2 мА. И внутреннее потребление стабилизатора — тоже, примерно, 2–3 мА. Вот из этого и будем исходить.
«Н»:Но ведь батарейки нас не спасут?
«А»:Ну конечно не спасут! Так что некий «лабораторный блок» сетевого питания строить все равно придется.
«С»:Это не проблема. Тем более, что это далеко не напрасный труд! Или этот же лабораторный блок, или такой же подобный, все равно должен войти в состав радиоприемника.
«Н»:Ну и отлично! Делать, так делать!
«С»:А еще говорят, что весь энтузиазм остался в прошлом!.. Ну, в таком случае, начнем рассмотрение схемотехнических вопросов именно с блока питания!
«Н»:Это, наверное, достаточно просто! Вот я сейчас зарисую «принципиалочку». Значит так… Трансформатор, выпрямители, а затем — на стабилитроны. Вот так, готово! А что, разве неправильно (рис. 20.4)?…

«А»:Твоими устами, Незнайкин, да мед бы пить!.. Представь себе, что идея у тебя правильная. Но, к сожалению, только в принципе! А любой прибор, Незнайкин, запомни это, должен работать НЕ В ПРИНЦИПЕ, А В КОРПУСЕ!
«Н»:А в чем ОНА — моя ошибка?
«А»:Если строить стабилизатор по предложенной тобой схеме, Незнайкин, учитывая тот факт, что сквозной ток стабилитрона СРАВНИМ ПО ВЕЛИЧИНЕ с током нагрузки, то плата за электроэнергию будет несколько выше оптимальной! А самое главное — стабилизатор этот все равно будет НИКУДА НЕ ГОДЕН! Потому что НЕСТАБИЛЬНОСТЬ выходного напряжения будет не менее нескольких ДЕСЯТКОВ МИЛЛИВОЛЬТ!
«Н»:Ну, а что с этим можно поделать?
«С»:Очень даже можно! Ты нарисовал так называемый ПАРАМЕТРИЧЕСКИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. То есть такой, степень стабилизации которого зависит от параметров примененных стабилитронов.
Но в современной электронике подобные стабилизаторы давно не применяются! А имеют место только, так называемые, КОМПЕНСАЦИОННЫЕ СТАБИЛИЗАТОРЫ. Ты ведь имел с ними дело, дружище Аматор?
«А»:Да, это великолепная вещь! Принцип действия компенсационного стабилизатора (иначе КС) сводится к автоматическому регулированию выходного напряжения. Компенсационные стабилизаторы напряжения являются АВТОРЕГУЛИРУЕМЫМИ УСТРОЙСТВАМИ с замкнутой системой автоматического регулирования. Принцип действия показан на приведенном рис. 20.5.

«Н»:Получается, что делитель напряжения на резисторах R2 и R3 позволяет получать в точке «а» напряжение, пропорциональное выходному U вых.
«А»:Да, если меняется U вых, скажем, увеличивается, то увеличивается и потенциал точки «а». А если U выхуменьшается, то это происходит и в названной точке тоже. Ну, рассуждай дальше…
«Н»:Я не знаю, как получается опорное напряжение в точке «б», но, оно НЕ ИЗМЕНЯЕТСЯ при изменении U вых! Но тогда между точками «а» и «б» возникает некоторое напряжение, величина и знак которого зависят от U вых?…
«С»:Смелее, Незнайкин! Далее это РАЗНОСТНОЕ напряжение заводится на входы УСИЛИТЕЛЯ РАССОГЛАСОВАНИЯ, на выходе которого вырабатывается сигнал, величина которого пропорциональна модулю напряжения рассогласования. А полярность такова, что управляемое им РЕГУЛИРУЮЩЕЕ УСТРОЙСТВО компенсирует ВСЕ изменения выходного напряжения.
Таким образом, СТАБИЛИЗАЦИЯ СВОДИТСЯ К УСТРАНЕНИЮ РАЗНОСТИ между эталонным (или опорным) напряжением и той частью выходного напряжения, которая поступает в точку «а». Ну вот, а теперь можно переходить к РЕАЛЬНЫМ принципиальным схемам!
КОНЕЦ ВТОРОЙ ЧАСТИ
Часть III
МЫ «ЛОВИМ» ВЕСЬ МИР
Глава 21. Стабилизатор напряжения — тонкости и нюансы
«Аматор»:Ну тогда вам, Спец, и карты в руки!
«Спец»:Вот какую принципиальную электрическую схему электронного стабилизатора напряжения я предлагаю сперва для обсуждения, а затем для реализации (рис. 21.1).

«Незнайкин»:Есть моменты в этой схеме, которых я не понимаю совершенно! Например, какую функцию выполняет транзистор КП103К?
«С»:Очень важную, дорогой Незнайкин! Этот типичный jFET, имеющий канал p -типа, включен в качестве СТАБИЛИЗАТОРА ТОКА. Этот стабилизатор тока удобен именно тем, что выполняется по схеме БЕЗ использования вспомогательного напряжения, благодаря чему это дает возможность включить его как ДВУХПОЛЮСНИК.
Читать дальшеИнтервал:
Закладка: