Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы
- Название:Шаг за шагом. Усилители и радиоузлы
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1965
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы краткое содержание
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Шаг за шагом. Усилители и радиоузлы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 52. Чем выше к. п. д. усилителя, тем больше выходная мощность при неизменной потребляемой мощности.
В усилителях НЧ главная арена борьбы за повышение к. п. д. — это анодные цепи ламп выходного каскада. Уменьшить мощность, потребляемую накальными цепями, мы не можем: для данного типа лампы напряжение и ток накала ни при каких обстоятельствах уменьшать нельзя. Экономить энергию, потребляемую в анодных и экранных цепях усилителя напряжения, не имеет особого смысла: на долю этих каскадов приходится сравнительно небольшая часть общего анодного тока, а значит, и небольшая часть мощности выпрямителя. Таким образом, остается единственная возможность заметно повысить к. п. д. всего усилителя — нужно уменьшить мощность, потребляемую в анодной цепи выходной лампы, точнее, повысить соотношение между выходной мощностью и потребляемой. Сейчас нам предстоит выяснить, какие существуют пути для того, чтобы улучшить это соотношение, и в какой степени повышение к. п. д. повлечет за собой рост (а может быть, и уменьшение?) искажений сигнала в выходном каскаде.
В этой странной, шифрованной записи скрыт секрет повышения к. п. д. усилителя. Ключ к шифру можно узнать, познакомившись с работой усилительного каскада, с теми событиями, которые происходят при изменении анодной нагрузки, смещения, напряжения сигнала, анодного и экранного напряжения— одним словом, при изменении режима лампы.
Еще раз нарисуем упрощенную схему выходного каскада и запишем, чему равна его выходная мощность Р вых и мощность, потребляемая в анодной цепи Р ао (рис. 53, 1, д, е ). Теперь прямо в «лоб» начнем атаку на к. п. д. — попробуем увеличить полезную мощность, повышая переменное напряжение U а~ и переменную составляющую анодного тока I а~ .

Рис. 53, 1
Если увеличить сопротивление нагрузки R а , а это несложно сделать, изменив коэффициент трансформации Тр в (рис. 49), то одновременно возрастет и напряжение U а~ (закон Ома: U = I· R!). Казалось бы, найден путь повышения выходной мощности Р вых . Но, к сожалению, по этому пути мы далеко не уйдем.
Переменное напряжение на нагрузке U н , складываясь с постоянным анодным напряжением U aо , определяет напряжение на аноде лампы U а . Во время положительных полупериодов результирующее напряжение на аноде равно сумме U а0 и U а~ , а во время отрицательных полупериодов — их разности (рис. 53, 2). Поэтому вместе с напряжением на нагрузке U н растет максимальное напряжение на аноде ( U макс = U а0 + U н. ампл ) и уменьшается минимальное напряжение ( U мин = U а0— U н. ампл ). Если в погоне за большой мощностью увеличить U н до такой степени, чтобы оно стало больше чем U а0 , то в некоторые моменты времени напряжение на аноде окажется отрицательным (рис. 53, 2, б, интервалы 1–2 и 3–4). При этом, естественно, и анодный ток станет равным нулю: при отрицательном напряжении на аноде он не притягивает электроны и они летят на управляющую, а в тетроде — на экранную сетку.
Прекращение анодного тока, пусть даже кратковременное, — это не что иное, как искажение формы сигнала, а его мы допустить не можем. Таким образом, и устанавливается предел повышения напряжения на нагрузке U н — оно не может быть больше чем U а0 . Об этом можно сказать и иначе, если ввести коэффициент использования анодного напряжения ζ . Искажений кривой тока можно избежать, если коэффициент ζ будет меньше единицы (рис. 53, 2, в, г).

Рис. 53, 2
Потерпев неудачу с увеличением U н , попробуем подступиться к задаче с другой стороны — увеличим переменную составляющую анодного тока I а~ . Сделать это довольно просто — достаточно увеличить переменное напряжение на сетке U вх , под действием которого меняется анодный ток. На рис. 53, 3, а вы видите встречавшийся раньше (рис. 30, 21 ) тройной график, на котором ламповая характеристика (динамическая) совмещена с графиками напряжения U c и тока I а . На графиках показан случай, когда амплитуда переменного входного напряжения U вх (ампл) равна постоянному отрицательному смещению на сетке. Ну, а что будет, если в погоне за большим переменным током увеличивать напряжение входного сигнала? Графики для этого случая показаны на рис. 53, 3, б . Присмотритесь к этим графикам и вы увидите, что результаты увеличения U вх оказались весьма печальными — форма графика тока сильно искажена. За счет захода в положительную область напряжений на сетке срезаны верхушки на графике тока (интервалы 1–2 и 5–6). Как только на сетке появляется «плюс», она перехватывает часть электронов и ток I с резко уменьшает входное сопротивление лампы.

Рис. 53, 3
Кроме того, анодный ток искажен и в области его минимальных значений. Отрицательное напряжение на сетке «перестаралось» — оно зашло слишком далеко, в ту область, где лампа оказывается запертой и анодного тока вообще нет. Из-за этого происходит так называемая отсечка анодного тока — напряжение на управляющей сетке меняется, а анодный ток равен нулю (интервал 3–4). Из графиков ясно видно, что во избежание искажений амплитуда переменной составляющей анодного тока I а~(ампл) не должна превышать постоянной составляющей I ао , а для этого напряжение на сетке U c не должно заходить ни в положительную область, ни в область, соответствующую запиранию лампы. Если ввести коэффициент использования анодного тока γ (рис. 53, 5, в ), то можно сказать, что неискаженное усиление возможно тогда, когда у не превышает единицы. Работа усилителя при этих условиях называется классом усиления А.
Максимальная неискаженная мощность, которую можно получить в классе А, соответствует коэффициентам ζ = 1 и γ = 1, то есть U н (ампл) = U а0 и I а~(ампл) = I а0 . Таким образом, амплитуда наибольшей выходной мощности P вых (ампл) равна мощности Р а0 , потребляемой в анодной цепи от выпрямителя. Не забудьте, что здесь речь идет об амплитуде выходной мощности, а ее эффективное значение будет в два раза меньше (рис. 30, 9 ). Иными словами, эффективная выходная мощность P вых не превышает половины потребляемой мощности Р а0 . Это значит, что максимально возможный к. п. д. анодной цепи в классе Ане превышает 50 %. Практически к.п.д. для этого класса усиления составляет 20–30 %.
Читать дальшеИнтервал:
Закладка: