Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы
- Название:Шаг за шагом. Усилители и радиоузлы
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1965
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы краткое содержание
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Шаг за шагом. Усилители и радиоузлы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

рис. 30, 9
Сейчас вам предстоит стать свидетелями того, как будет найден выход из, казалось бы, безвыходного положения. Мы познакомимся со схемами усиления, в которых к. п. д. анодной цепи выше и даже значительно выше, чем 50 %. При этом мы пойдем по только что забракованному пути повышения мощности Р вых — будем увеличивать переменную составляющую анодного тока. Как и раньше, этот путь приведет нас к недопустимым нелинейным искажениям. Но для схем, о которых пойдет речь, — это не слишком большое зло. Искажая форму анодного тока, они (чудеса, да и только!) дают на выходе неискаженный сигнал. Правда, это относится не ко всем искажениям, а лишь к некоторым их видам. Вот почему прежде, чем рассматривать «чудесные» схемы, нам целесообразно подробнее познакомиться с самим механизмом искажений.
На рис. 53 и 54 показаны тройные графики основных режимов работы усилителя, основных классов усиления. Переход из одного класса в другой можно осуществить, изменяя напряжение входного сигнала и отрицательное смещение на сетку.
График рис. 53, 3, а относится к классу А, для которого характерны низкий к. п. д. и малые искажения.
Класс усиления АВ(рис. 54, 55 и 56, 1, б, в ) характеризуется отсечкой анодного тока.
В отличие от класса А, рабочую точку (начальное отрицательное смещение U cм ) выбирают не в середине прямолинейного участка ламповой характеристики, а сдвигают ее влево — в сторону больших отрицательных напряжений. Проще говоря, отрицательное смещение U cм в классе АВ больше, чем в классе А (рис. 55).

Рис. 55. Изменяя уровень входного сигнала ( U вх) и постоянное смещение на сетку ( U см), можно менять режим усилителя, переводить его из одного класса усиления в другой.
Одновременно со смещением увеличивают напряжение входного сигнала. В результате всего этого и появляется отсечка — какую-то часть периода лампа заперта и анодный ток равен нулю. При переходе в класс АВ мы дважды выигрываем в борьбе за к. п. д. Во-первых, растет переменная составляющая анодного тока I а~ , а во-вторых, уменьшается его постоянная составляющая I а0 . Происходит это потому, что под действием большого смещения U cм уменьшается постоянный ток при отсутствии сигнала — ток покоя I пок . Постоянная составляющая I а0 в классе АВ несколько больше, чем I пок , но все же она меньше, чем в классе А.
Теперь, не меняя смещения U cм , будем увеличивать переменное напряжение на сетке U вх . После того как амплитуда U вх превысит U cм , на сетке в некоторые моменты времени будет появляться «плюс», а вместе с ним и небольшие импульсы сеточного тока I с . Это уже будет класс АВ 2. Индекс «2» как раз и говорит о том, что каскад работает с сеточным током. Индекс «1» ( A 1и AB 1) соответствует классам усиления, при которых каскад работает без сеточных токов.
Индекс «1» часто не пишут, и поэтому, если вы встретите запись «класс А» или «класс АВ», знайте, что это относится к классам усиления A 1и AB 1. Если же каскад работает с сеточными токами, то индекс «2» пишут обязательно.

Рис. 54, 2
Класс АВ — понятие весьма расплывчатое. Ему может соответствовать и очень большая и очень небольшая по длительности отсечка анодного тока, а значит, большие и малые нелинейные искажения. Согласитесь сами, что одно дело, когда напряжение на сетке запирает лампу ненадолго, ну, скажем, на сотую долю периода, и совсем другое дело, когда лампа заперта чуть ли ни на целую половину периода. Поэтому в ряде случаев недостаточно указать, что каскад работает в классе АВ (иногда говорят: в режиме АВ или даже в режиме класса АВ), а нужно добавить, что анодный ток существует такую-то часть периода.
В теории усилителей для оценки времени существования тока применяют особую меру — угол отсечки θ (рис. 55, 56). Этот угол, как и угол сдвига фаз, измеряется в градусах (единица времени) и соответствует половине времени существования анодного тока. Так, например, если в результате отсечки ток существует лишь 3/4 периода, то угол отсечки равен 135° (время существования тока 270°). Для класса А, где никакой отсечки вообще нет, угол θ равен 180° (время существования тока 360°, то есть весь период). Ясно, что с уменьшением угла отсечки θ импульсы анодного тока становятся все более кратковременными, а паузы между ними растут, то есть резко возрастают искажения формы сигнала (ничего не поделаешь — знали, на что шли!). Одновременно с этим уменьшается I а0 и повышается к. п. д.
Увеличивая угол отсечки, можно дойти до того, что анодный ток будет существовать лишь половину периода ( θ = 90°). Такой режим усиления выделяют особо и называют классом В(рис. 54, 55 и 56, 1, г ). Теперь вам, очевидно, понятно и название класса АВ — оно говорит о том, что этот класс является промежуточным между классом А (время существования тока 360°, то есть угол отсечки 180°) и классом В (время существования тока 180°, то есть угол отсечки 90°). Класс В 2— это тот же класс B 1, но в случае, когда каскад работает с сеточными токами. Реальный к. п. д. анодной цепи в классе В достигает 70 % (в два раза больше, чем в классе А).

Рис. 54, 1
Отличительной особенностью класса В является то, что отрицательное смещение U cм полностью запирает лампу ( U cм = U зап ), и поэтому при отсутствии сигнала анодный ток равен нулю ( I пок = 0). Только во время положительного полупериода лампа отпирается, и в анодной цепи появляется ток. Постоянная составляющая анодного тока I а0 зависит от уровня входного сигнала: чем больше U вх , тем больше импульсы анодного тока, тем больше I а0 . Поэтому во время реальной передачи, когда уровень входного сигнала резко меняется (именно в этом и отражено изменение громкости звука), постоянная составляющая анодного тока также не остается постоянной.
Если, работая в классе В, еще больше увеличить отрицательное смещение, то мы перейдем в класс С( C 1или С 2, рис. 54, 55, 56, 1, д ), где угол отсечки меньше 90°, то есть время существования импульсов тока меньше половины периода (меньше 180°). Хотя этот класс характеризуется весьма высоким к. п. д., в усилителях низкой частоты он не применяется.
Читать дальшеИнтервал:
Закладка: