Юрий Ревич - Занимательная электроника

Тут можно читать онлайн Юрий Ревич - Занимательная электроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная электроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2015
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-3479-6
  • Рейтинг:
    2.9/5. Голосов: 921
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная электроника краткое содержание

Занимательная электроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.

Для широкого круга радиолюбителей

Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная электроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

На рис. 9.21, а показана схема развязывающего фильтра для маломощной нагрузки в пределах одного электронного узла. Это может быть входной каскад усиления микрофонного усилителя, который особо чувствителен к качеству питания, и его требуется развязать от следующих более мощных каскадов. На рис. 9.21, б показана правильная организация питания с такими фильтрами для быстродействующих или прецизионных измерительных усилителей — в частности, в измерительных схемах, о которых мы будем говорить в следующих главах.

Рис 921 Разводка питания а схема разделения нагрузок с помощью - фото 79

Рис. 9.21. Разводка питания:

а— схема разделения нагрузок с помощью развязывающего фильтра;

б— организация питания для быстродействующих и прецизионных усилителей

ГЛАВА 10

Тяжеловесы

Устройства для управления мощной нагрузкой

— Что вы делаете? — с удивлением воскликнула миледи.

— Положите мне руки на шею и не бойтесь ничего.

— Но из-за меня вы потеряете равновесие, и оба мы упадем и разобьемся.

А. Дюма.Три мушкетера

Многие практические задачи состоят в том, чтобы маломощное управляющее устройство, например простой переменный резистор или схема управления, построенная на логических или аналоговых микросхемах, могло бы управлять мощной нагрузкой, как правило, работающей от бытовой электрической сети. Это одна из тех областей техники, где за последние полвека электроника совершила настоящий переворот.

Представьте себе работу, скажем, осветителя в театре еще в пятидесятые годы XX века. Для плавного регулирования яркости прожектора тогда использовался последовательно включенный реостат — проще говоря, регулирование осуществлялось по схеме, приведенной на рис. 1.4. Более экономичный, но и более дорогой и громоздкий вариант, — ставить на каждый прожектор по регулируемому автотрансформатору с ползунком, управляемым вручную. Иногда в таких автотрансформаторах для дистанционного вращения ползунка приспосабливали моторчик, и вся система управления освещением с жужжащими трансформаторами, завывающими моторчиками и клацающими реле-пускателями начинала напоминать небольшой цех. То ли дело сейчас, когда осветитель сидит за клавиатурой вроде компьютерной (а иногда и просто за компьютерной) и управляет этим хозяйством легкими движениями пальцев. А нередко — как в массовых театрализованных представлениях — человек оказывается вообще не нужен, система управляется компьютером по заранее заданной программе. Все это стало возможным только лишь с появлением электронных устройств управления мощными нагрузками.

В главе 9 мы уже упоминали о том, что электронные устройства ни в коем случае нельзя строить по бестрансформаторной схеме — так, чтобы органы управления были напрямую связаны с сетью. При построении схем, управляющих сетевой нагрузкой, возникает непреодолимое искушение избавиться от трансформаторов питания и последующих устройств сопряжения — в самом деле, электричество в конечном счете одно и то же, так, спрашивается, зачем возиться? Но не поленимся повторить: поступать так не следует, потому что это опасно для жизни. И не только вашей жизни, которая подвергнется опасности при отладке подобных устройств, но и для жизни тех, кто будет вашими устройствами пользоваться. Тем не менее, здесь вы найдете некоторые исключения из этого правила — они касаются случая, когда управление сетевой нагрузкой осуществляется в автоматическом режиме, и доступ людей к элементам схемы во время ее работы исключен.

Самая простая схема управления мощной нагрузкой — релейная. Она применима в тех случаях, когда нагрузку нужно просто включать и выключать. Мы не будем подробно останавливаться на этом случае, т. к. о реле достаточно сказано в главе 7 .

Однако отметим один существенный момент, о котором мы ранее не упоминали, — дело в том, что при релейном управлении сетевая нагрузка может отключаться и включаться, естественно, в произвольный момент времени. В том числе, этот момент может попадать и на самый пик переменного напряжения, когда ток через нагрузку максимален. Разрыв — или соединение — цепи с большим током, как мы уже знаем (см. главы 5 и 7 ), приводит к разного рода неприятностям. Во-первых, это искрение на контактах из-за выброса напряжения, что ведет к их повышенному износу, во-вторых, и в-главных, это создает очень мощные помехи, причем как другим потребителям в той же сети, так и электромагнитные помехи, распространяющиеся в пространстве. В моей практике был случай, когда включение мощного двигателя станка через пускатель приводило к тому, что в микроконтроллере, установленном в блоке управления на расстоянии пяти метров от станка, стиралась память программ! И это несмотря на то, что все стандартные меры по защите от помех по питанию были приняты.

Чтобы избежать такой ситуации, для коммутации мощной нагрузки лучше применять не обычные электромагнитные реле или пускатели, а оптоэлектронные. В них часто встроен так называемый zero-детектор — устройство, которое при получении команды на отключение или включение дожидается ближайшего момента, когда переменное напряжение переходит через ноль, и только тогда выполняет команду.

А теперь перейдем к более интересным вещам — к плавному регулированию мощности в нагрузке. Мы будем это делать, управляя действующим значением напряжения, которое на нее поступает.

Базовая схема регулирования напряжения на нагрузке

Для этой цели нам придется применить один электронный прибор, который мы до сих пор не рассматривали, — тиристор , представляющий собой управляемый диод и соединяющий в себе свойства диода и транзистора. По схеме включения тиристор несколько напоминает транзистор в, ключевом режиме — у него тоже три вывода, которые работают аналогично соответствующим выводам транзистора (рис. 10.1, а ).

В обычном состоянии тиристор заперт и представляет собой бесконечное сопротивление, а для его открывания достаточно подать напряжение на управляющий электрод — аналог базы у транзистора. Разница между тиристором и транзистором заключается в том, что для удержания транзистора в открытом состоянии через базу нужно все время гнать управляющий ток, а тиристору для открывания достаточно короткого импульса.

Величина тока через управляющий электрод составляет несколько единиц или дeсятков миллиампер в зависимости от мощности тиристора — для очень мощных приборов она может составлять единицы ампер (причем в ряде случаев ограничительный резистор можно не ставить — на схеме рис. 10.1, а он показан пунктиром). При этом напряжение должно достигать определенной величины — амплитуда управляющих импульсов для тиристоров средней мощности (рассчитанных на токи порядка 3-10 А) должна составлять примерно 5-10 В, а длительность его может не превышать 0,05 мс.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная электроника отзывы


Отзывы читателей о книге Занимательная электроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x