Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В отсутствие открывающего импульса тиристор все равно можно открыть, если подать на анод достаточно высокое напряжение — ток через управляющий электрод всего лишь снижает это открывающее анодное напряжение практически до нуля (но при этом управляющий импульс также должен иметь напряжение не ниже некоторого порога). Существует даже отдельный класс приборов под названием динисторы, представляющие собой тиристоры без управляющего электрода — они открываются при превышении анодным напряжением определенной величины, которая обычно составляет несколько десятков вольт. Тиристоры могут также открываться самопроизвольно, если анодное напряжение нарастает слишком быстро (со скоростью порядка 10 В/мкс и более). Во избежание этого в схемах на тиристорах следует шунтировать промежуток катод-управляющий электрод резистором (на схеме рис. 10.1, а не показан). В настоящее время выпускаются специальные тиристоры и симисторы (о них рассказано далее), лишенные этого недостатка и предназначенные для работы в импульсных цепях.

Рис. 10.1. Схемы включения тиристоров и симисторов:
а— основная схема включения тиристора ( 1— управляющий электрод; 2— анод; 3— катод);
б— включение симистора
Как и все диоды, тиристоры выдерживают большие перегрузки по току при условии, что они кратковременны. Во включенном состоянии тиристор ведет себя, как обычный диод, а закроется только тогда, когда ток через него (именно через него, в цепи анод-катод, а не по управляющему переходу) снизится до нуля. Если использовать его в цепи переменного тока, то это произойдет почти сразу, в конце ближайшего полу периода, при переходе напряжения через ноль. А вот в цепи постоянного тока тиристор сам не отключится, пока через него идет ток. Вообще-то, тиристор можно закрыть и подачей на управляющий электрод импульса противоположной полярности, но практически этим никто не пользуется (и возможность эта для обычных тиристоров относится к числу недокументированных), потому что и напряжение, и ток такого импульса должны быть сравнимы с напряжением и током в силовой цепи анод-катод.
Одиночный тиристор может обеспечить регулирование только положительного напряжения. В сети переменного тока в открытом состоянии он будет работать, как диод, отрезая отрицательную полуволну. Чтобы регулировать переменное напряжение в течение обоих полупериодов, нужен еще один тиристор, включенный наоборот. Так как тиристоры во всем, кроме управления, ведут себя подобно диодам, их можно включать встречно-параллельно. Для обычных диодов такое включение применяется только в схемах, подобных показанной на рис. 7.5, — они будут всегда открыты, так что, если не обращать внимания на падение напряжения в 0,6 В, при включении последовательно с нагрузкой такая схема просто ничего не делает.
Иное дело тиристоры — если на управляющие электроды ничего не подавать, то нагрузка будет отключена, если же подавать управляющие импульсы в нужной фазе и полярности относительно питающего напряжения, то они будут открываться и подключать нагрузку.
Симметричные тиристоры , или симисторы (рис. 10.1, б ), естественно, выпускаются и отдельно. На западный манер симистор называется триаком . В симисторе имеется один управляющий электрод, причем в общем случае знак управляющего напряжения должен совпадать с полярностью на аноде. Популярные в нашей стране симисторы КУ208 при положительном напряжении на аноде могут включаться импульсами любой полярности, подаваемыми на управляющий электрод относительно катода, а при отрицательном — импульсами только отрицательной полярности.
На осциллограммах (рис. 10.2) перед нами пример управления мощностью в нагрузке с помощью пары встречно-параллельно включенных тиристоров или симистора.
В начале каждого полупериода тиристор закрыт, управляющий импульс подается только через промежуток времени, равный трети длительности этого полупериода (т. е. со сдвигом фаз, равным π /3 относительно напряжения питания), и тогда тиристор открывается. Закрывается он, как уже говорилось, автоматически в момент перехода питающего напряжения через ноль. В результате напряжение на нагрузке будет иметь необычный вид, показанный на графике (см. рис. 10.2 внизу ).

Рис. 10.2. Графики напряжения в схеме фазового управления с помощью тиристоров или симистора
Каково будет действующее значение напряжения?
Ясно, что оно будет меньше, чем в отсутствие тиристора, — или чем в случае, если бы управляющий импульс подавался в самом начале периода. Если же, наоборот, подавать управляющий импульс в самом конце, то действующее значение будет близко к нулю. Таким образом, сдвигая фазу управляющих импульсов, мы можем плавно менять мощность в нагрузке с достаточно высоким КПД.
А можно ли вычислить, чему будет равно действующее значение во всех этих случаях? Обычно такие расчеты не требуются, но в некоторых случаях, как мы увидим далее, полезно эту величину знать, т. к. стандартным цифровым мультиметром измерить ее невозможно — по причинам, указанным в главе 4 , он покажет для напряжения такой формы все, что угодно, только не истинную величину. Для того чтобы рассчитать величину действующего значения для разных величин сдвига фазы, нужно взять интеграл от квадрата мгновенного значения напряжения в течение всего полупериода. Полученная в результате формула будет выглядеть так:

где:
□ U д — действующее значение напряжения на нагрузке;
□ U а — амплитудное значение питающего напряжения;
□ t — определяется по формуле f= π— φ, если сдвиг фазы φ выражать в радианах, или по формуле t= π(180 — φ)/180, если сдвиг фазы φ выражать в градусах.
При сдвиге фазы больше, чем половина периода (т. е. φ > π /2), полезно знать также максимальное значение напряжения на нагрузке U мах , потому что от этого иногда зависит выбор элементов (при сдвиге фазы меньше половины периода максимальное значение попросту равно амплитудному значению питающего напряжения).
Его можно рассчитать по простой формуле: U мах= = U а· sin( φ).
Читать дальшеИнтервал:
Закладка: