Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]
- Название:Искусство схемотехники. Том 2 [Изд.4-е]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1993
- Город:Москва
- ISBN:5-03-002338-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е] краткое содержание
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах.
Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах.
Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Искусство схемотехники. Том 2 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
RESET DRV. Предустановка драйвера. Два состояния, является выходным (по отношению к ЦП), действующий уровень — высокий. Вырабатывается ЦП при включении электропитания. Используется для предустановки устройства ввода-вывода в заданное начальное состояние.
DRQ1-DRQ3. Запрос ПДП. Два состояния, является входным (по отношению к ЦП), действующий уровень — высокий. Вырабатывается устройством ввода-вывода, которое запрашивает канал ПДП. Приоритеты установлены таким образом, что DRQ1 имеет наивысший, a DRQ3 — наинизший приоритеты. Подтверждается сигналами DACK1 ' -DACK3 ' .
DACK0 ' -DACK3 ' . Подтверждение ПДП. Два состояния, является выходным (по отношению к ЦП), действующий уровень — низкий. Вырабатывается ЦП (или контроллером ПДП) для того, чтобы обозначить подтверждение соответствующего запроса ПДП.
ALE. Разрешение фиксации адреса. Два состояния, является выходным (по отношению к ЦП), действующий уровень — высокий. Микропроцессор Intel 8088 использует мультиплексируемую шину данные/адрес, и этот сигнал соответствует строб-сигналу МП, используемому регистрами-фиксаторами на системной плате для фиксации адреса. Может быть использован в качестве сигнала начала цикла ЦП; обычно при проектировании ввода-вывода игнорируется.
CLK. Тактовый сигнал. Два состояния, является выходным (по отношению к ЦП). Это-тактовый сигнал ЦП; он асимметричен, 1/3 периода поддерживается высокий уровень, а 2/3 — низкий. Исходные PC работали на частоте 4,77 МГц, сейчас используются более высокие частоты. Сигнал CLK применяется для синхронизации состояний ожидания при запросах (с использованием сигнала I/O CHRDY) для того, чтобы удлинить цикл ввода-вывода для медленных устройств.
OSC. Тактовый сигнал. Два состояния, является выходным (по отношению к ЦП). Этот сигнал представляет собой меандр с частотой 14,31818 МГц, который может использоваться (будучи поделенным на 4) для синхронизации работы цветного дисплея.
Т/С. Завершение передачи. Два состояния, является выходным (по отношению к ЦП), действующим является высокий уровень. Этот сигнал сообщает порту ввода-вывода, что передача блока данных в режиме ПДП завершена. Устройство, выполняющее ПДП, должно обрабатывать этот сигнал по совпадению с сигналом DACK ' для используемого канала, поскольку сигнал Т/С вырабатывается независимо от того, по какому из каналов ПДП завершилась передача блока.
I/O СН СК ' . Проверка канала ввода-вывода. Открытый коллекторный выход, является входным (по отношению к ЦП), действующий уровень-низкий. Инициирует прерывание с наивысшим приоритетом (немаскируемое прерывание); используется для того, чтобы сигнализировать о состоянии ошибки в каком-то из внешних устройств. Центральный процессор определяет «возмутителя спокойствия» опросом внешних устройств (см. разд. 10.11 ); следовательно, каждое устройство, которое вырабатывает сигнал I/O СН СК ' , должно иметь бит состояния, который может быть прочитан ЦП.
I/O СН RDY. Готовность канала ввода-вывода. Открытый коллекторный выход, является входным (по отношению к ЦП), действующий уровень — высокий. Формирует состояние ожидания, если перед вторым фронтом сигнала CLK цикла процессора (в цикле обычно 4 такта сигнала CLK) уровень сигнала I/O СН RDY установлен низким. Используется для удлинения цикла магистрали для медленных устройств ввода-вывода или при обращении к памяти.
GND, +5VDC, —5VDC, +12VDC, -12VDC. «Земля» и уровни постоянных напряжений питания. Регулируемые уровни постоянного напряжения, передаваемые по магистрали для питания внешних устройств, размещенных на вставных платах. Изучите описание вашего компьютера для того, чтобы выяснить ограничения на суммарную потребляемую электрическую мощность, которая зависит от модификации компьютера. Вообще говоря, мощности должно хватить для питания всего того, что вы подключите с помощью разъемов расширения магистрали.
Протокол ввода-вывода, описанный нами ранее, является примером синхронного обмена данными; данные выставляются на шину или принимаются с нее синхронно со стробирующими сигналами, которые генерируются ЦП (или контроллером ПДП). Этот метод отличается простотой, однако он чреват неприятностями в случае использования протяженных длинных шин, поскольку большое время распространения сигнала может привести к тому, что данные в операции ввода будут устанавливаться недостаточно быстро, чтобы обеспечить надежную передачу. Собственно говоря, при синхронном протоколе устройство, посылающее данные, так никогда и не узнает, получены ли эти данные! Это может показаться серьезным недостатком, но в действительности компьютерные системы с синхронными магистралями превосходно работают.
Альтернативой является асинхронная магистраль, на которой операция, например, ввода осуществляется следующим образом. ЦП устанавливает адрес порта, а на стробирующей линии (назовем ее, как и раньше, IOR ' ) уровень (не импульс), который показывает адресному устройству, что идет операция ввода. Адресуемое устройство устанавливает данные на линиях DATA, а также уровень, сигнализирующий о наличии достоверных данных (назовем его DTACK ' , data transfer acknowledged, подтверждение передачи данных). ЦП, обнаружив DTACK ' , фиксирует («защелкивает») данные и затем снимает уровень IOR ' . Как только интерфейс замечает, что линия IOR ' переходит в высокое состояние, он снимает сигналы с линий DTACK ' и DATA. Другими словами, ЦП заявляет: «Дай мне данные». Периферийное устройство отвечает: «Вот они, бери». Тогда ЦП говорит: «Готово, взял». И, наконец, периферийное устройство завершает диалог: «Отлично! Пойду снова спать». Описанную процедуру иногда называют «рукопожатием», или квитированием. Асинхронный протокол допускает использование длинных шин и позволяет взаимодействующим устройствам убедиться, что данные действительно передаются. Если удаленное устройство будет выключено, ЦП узнает об этом. Собственно говоря, эта информация доступна (через регистры состояния) на магистралях любого вида, и основное достоинство асинхронного протокола заключается в возможности использовать линии связи любой длины за счет незначительного усложнения аппаратуры.
Иногда вам может понадобиться подключить к магистрали относительно медленные интерфейсные ИС; примером может служить ПЗУ с большим временем доступа или даже ОЗУ. Все магистрали предоставляют какие-то средства удлинения цикла магистрали, однако при асинхронном протоколе это происходит само по себе, поскольку цикл магистрали продолжается до тех пор, пока не будет снят сигнал DTACK ' . Синхронные магистрали всегда содержат какую-то линию типа HOLD ' (в компьютерах PC она называется I/O СН RDY) для организации состояний ожидания и задержки во времени конца цикла. Результирующая длительность цикла всегда увеличивается на целое число тактов генератора ЦП, т. е. на число включенных в цикл «состояний ожидания». Например, стандартная IBM PC имеет тактовую частоту 4,77 МГц (период 210 нc), а длительность обычного цикла магистрали при обращении к памяти составляет 4 тактовых периода (840 нc). Если сигнал I/O СН RDY переводится в низкое состояние при обращении к памяти перед вторым фронтом сигнала CLK и снова переходит в высокое состояние перед третьим, генерируется одно состояние ожидания с удлинением цикла магистрали (а также и сигналов MEMW ' или MEMR ' ) до 5 тактов (1050 нc). Удерживая сигнал I/O СН RDY в низком состоянии на протяжении большего числа тактов, вы создаете дополнительные состояния ожидания, вплоть до 10 периодов тактового генератора.
Читать дальшеИнтервал:
Закладка: