Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]
- Название:Искусство схемотехники. Том 2 [Изд.4-е]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1993
- Город:Москва
- ISBN:5-03-002338-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е] краткое содержание
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах.
Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах.
Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Искусство схемотехники. Том 2 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Не следует путать такие программные прерывания с аппаратными прерываниями, вырабатываемыми внешними устройствами, о чем мы говорили выше. Выполнение программных прерываний — это искусный прием использования векторизованной передачи управления из программы пользователя системному программному обеспечению. Но такие прерывания не являются настоящими прерываниями в смысле аппаратно вырабатываемых запросов внешних автономных устройств. Напротив, вы можете встроить эти прерывания в свою программу, вы знаете, когда они произойдут (вот почему вы можете передавать аргументы через регистры ЦП) и они являются всего навсего реакцией (почти такой же, какая следует в случае «истинного» прерывания) ЦП на свою собственную команду. Можете считать программные прерывания мудрым способом расширения набора команд ЦП.
Встречаются ситуации, когда данные должны быть переданы от устройства или в устройство очень быстро. Классическим примером является быстрое устройство массовой памяти, например диск или магнитная лента, а также такие приложения, связанные со сбором данных в реальном времени, как многоканальный амплитудный анализ. Программная передача каждого отсчета, инициируемая по прерыванию, в таком случае будет неудобной и, возможно, слишком медленной. Например, данные считываются с гибкого диска с высокой плотностью записи со скоростью около 500 Кбит/с или 1 байт каждые 16 мкс. Если соблюдать все описанные этапы обработки запроса на прерывание, данные почти наверняка будут пропущены, даже если гибкий диск будет единственным источником прерываний в компьютере; с несколькими подобными устройствами ситуация становится безнадежной. Еще хуже дело обстоит с жестким диском, для которого типичное время, затрачиваемое на передачу байта, составляет 2 мкс, что полностью исчерпывает возможности программируемого ввода-вывода. Такие устройства, как диски и магнитные ленты (не говоря уж об упомянутых сигналах и данных в реальном масштабе времени), не могут остановиться на полпути так, что требуется метод, обеспечивающий возможно более быструю реакцию и высокую общую скорость передачи данных. Даже для внешних устройств с низкой средней скоростью передачи данных может требоваться малое время реакции, т. е. время от начального запроса до собственно передачи данных.
Решением этих проблем является прямой доступ в память (ПДП), метод непосредственной связи внешнего устройства с памятью. В некоторых микрокомпьютерах (в том числе и IBM PC) такая связь фактически поддерживается аппаратным устройством (архитектурой ЦП), но не это главное. Важным моментом является то, что при передаче данных отсутствует программирование; байты передаются между памятью и внешним устройством по магистрали, без участия программы. Единственным влиянием на программу является некоторое замедление ее работы, поскольку режим ПДП «захватывает» такты магистрали, которые в противном случае могли бы быть использованы для доступа к памяти при выполнении программы. Аппаратная реализация интерфейса, поддерживающего режим ПДП, сложна, не следует без необходимости использовать этот режим. Однако полезно знать потенциальные возможности, поэтому мы вкратце опишем, что необходимо для построения интерфейса, поддерживающего режим ПДП. Как и в случае с прерываниями, конструкторы IBM PC упростили протокол ПДП; основную работу выполняет контролллер ПДП, расположенный на системной плате, что делает протокол ПДП сравнительно простым. Однако интерфейсы, поддерживающие режим ПДП, обычно оказываются машинно-зависимыми и сложными. Сначала мы поясним функционирование более употребительного метода ПДП с управлением сигнала магистрали, а затем — упрощенный протокол ПДП для PC.
Типовой протокол ПДП.При пересылках данных в режиме ПДП внешние устройства получают доступ к магистрали с помощью специализированных линий «запроса магистрали» (которые также, как IRQ-линии, имеют приоритеты), являющихся составной частью магистрали. Центральный процессор разрешает и ПДП и отдает управление адресами, данными и строб-сигналами. Затем внешнее устройство выставляет адреса памяти на магистраль и либо передает, либо принимает данные побайтно, синхронизуясь с устанавливаемыми им же строб-сигналами; другими словами, внешнее устройство «захватывает» магистраль и работает как ЦП, непосредственно пересылая данные. Устройство, которое в режиме ПДП управляет магистралью, отвечает за вычисление адресов (как правило, непрерывную область адресов, вырабатываемых с помощью двоичного счетчика) и подсчет количества переданных байтов. Обычно для этого достаточно иметь счетчик байтов и адресный счетчик в составе интерфейса.
Эти счетчики первоначально загружаются на ЦП, посредством программируемого ввода-вывода, для того, чтобы предустановить требуемые параметры передачи данных в режиме ПДП. По команде ЦП (посредством записи управляющего бита с помощью программируемого ввода-вывода) интерфейс формирует требование ПДП и начинает пересылать данные. Интерфейс может освобождать магистраль в промежутки времени между передачей байтов (позволяя тем самым ЦП «урвать» время и выполнить несколько команд), или он может вести себя более эгоистично, захватывая магистраль на все время передачи блока данных. После того, как все данные переданы, интерфейс освобождает магистраль до следующего раза и сообщает программе о том, что все закончено, устанавливая бит состояния и вырабатывая прерывание, после чего ЦП может решить, что делать дальше.
Загрузка данных или программ с диска-наиболее общий пример передачи данных в режиме ПДП. Выполняемая программа запрашивает какие-нибудь файлы по именам; операционная система (подробнее - чуть позже) преобразует эти имена в команды программируемого вывода данных для управляющего (или командного) регистра интерфейса диска, регистра счетчика байтов и адресного регистра (описывая с какого места на диске, и сколько байтов надо считать, и в какую область памяти их поместить). Затем интерфейс диска отыщет необходимую область на диске, сформирует запрос ПДП и начинает передавать блоки данных в заданную область памяти. Когда это будет выполнено, интерфейс установит определенные биты в регистре состояния для того, чтобы обозначить завершение работы и затем инициирует прерывание. Центральный процессор, который тем временем выполняет другие команды (или, возможно, как раз ожидает данных с диска), «откликается» на прерывание, по содержимому регистра состояния интерфейса диска определяет, что данные находятся в памяти и затем переходит к выполнению следующих команд. Таким образом, программируемый ввод-вывод (простейший вариант ввода-вывода) был использован для инициализации режима ПДП, собственно ПДП (перехватывающий у ЦП циклы магистрали) был использован для быстрой передачи данных, а прерывание было использовано для того, чтобы дать знать компьютеру о том, что передача выполнена. Такого рода иерархия ввода-вывода — исключительно частый прием, особенно для устройств массовой памяти; максимальная скорость передачи данных по типовой микрокомпьютерной магистрали в режиме ПДП может составлять от 1 до 10 млн. слов в секунду.
Читать дальшеИнтервал:
Закладка: