Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]
- Название:Искусство схемотехники. Том 2 [Изд.4-е]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1993
- Город:Москва
- ISBN:5-03-002338-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е] краткое содержание
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах.
Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах.
Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Искусство схемотехники. Том 2 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Теперь мы можем открыть тщательно скрываемый секрет про синхронные и асинхронные магистрали: практически все микрокомпьютеры с одним процессором (или, точнее, с одним ведущим на магистрали) являются синхронными, потому что вся синхронизация привязана к единственному генератору ЦП (вроде 4,77 МГц тактового генератора исходных IBM PC). В результате если периферийное устройство задерживает свое подтверждение на «асинхронной» магистрали, цикл всегда удлиняется на целое число тактов ЦП. Разница между синхронными и асинхронными магистралями в действительности заключается в следующем. На «асинхронной» магистрали состояния ожидания включаются в цикл по умолчанию, если только не установлен в низкое состояние сигнал DTACK ' (поступающий через проводное ИЛИ), в то время как на «синхронной» магистрали состояния ожидания по умолчанию не возникают; они генерируются лишь если линия проводного ИЛИ (HOLD ' ) устанавливается в низкое состояние. Однако различие не носит лишь семантический характер — «синхронный» протокол не позволяет работать с длинными шинами, потому что в этом случае сигнал HOLD ' поступает в ЦП слишком поздно, чтобы удлинить цикл, в то время как на «асинхронной» магистрали ЦП не завершит цикл обмена без вашего разрешения (сигнал DTACK ' ). Со свойственной нам скромностью мы предлагаем, во избежание недоразумений, пользоваться следующей многообещающей терминологией: если состояния ожидания генерируются на магистрали по умолчанию («асинхронная» магистраль), будем называть ее «с ожиданием по умолчанию» (default-wait); если состояния ожидания возникают только при их запросе («синхронная» магистраль), будем называть ее «с ожиданием по запросу» (request-wait). Магистраль IBM PC характеризуется ожиданием по запросу, а магистраль VME (см. ниже) — по умолчанию.
Процессы на магистрали еще более усложняются в многопроцессорных системах, где управление магистралью переходит из рук в руки. На синхронной магистрали с несколькими ведущими все ведущие должны использовать единый тактовый генератор, в то время как асинхронная магистраль допускает различные тактовые частоты. К счастью для вас, обсуждение многопроцессорных систем выходит за рамки этой книги! Следует отметить обстоятельство, могущее привести к недоразумениям. Вы не добавляете состояния ожидания при работе с медленными периферийными устройствами (например принтером); это следует делать лишь при наличии медленных ИС (скажем, ПЗУ с временем доступа 250 нc или медленной периферийной БИС). Медленная периферия обычно безнадежно медленна (миллисекунды, а не наносекунды); с такими устройствами следует посылать (или принимать) байт на полной скорости магистрали, фиксируя его в регистре байтовой ширины, после чего ожидать прерывания (или, возможно, установки флага состояния), чтобы инициировать следующую передачу на, полной скорости.
Для иллюстрации архитектуры микрокомпьютерной магистрали-сигналов на магистрали, разновидностей ввода-вывода, прерываний, прямого доступа к памяти, мы выбрали магистраль IBM PC. Для книги по электронике это оправданный выбор, так как компьютеры типа PC выпускаются повсеместно и широко применяются в технике вообще и в системах сбора данных и управления в частности. К тому же, магистраль PC исключительно проста в объяснении и использовании.
Однако за простоту приходится платить. Магистрали исходных IBM PC свойственны серьезные ограничения, уже упоминавшиеся ранее (например, малое число уровней прерываний и каналов ПДП). Кроме того, магистраль IBM PC имеет по нынешним меркам слишком маленькое адресное пространство (20 бит, и доступны только 640 К), слишком узкую шину данных (8 бит), недостаточную скорость передачи данных (максимально 1,2 Мбайт/с) и невозможность работы с несколькими ведущими шины. Для последующих поколений машин PC фирма IBM разработала улучшенные магистрали, сначала магистраль PC/AT (совместимое усовершенствование исходных PC), а затем новую (и несовместимую!) «микроканальную» магистраль для серии машин PS/2. Вне мира IBM можно найти конкурирующие магистрали конкретных разработчиков (например, Q-bus и VAXBI фирмы DEC), а также типовые магистрали (Multibus, NuBus, VME). Давайте пройдемся по компьютерным магистралям, перечисленным в табл. 10.2.
PC/AT и Micro Channel.Компьютеры IBM PC/AT (сокращение от Advanced Technology, улучшенная технология) появились в 1984 г., а в 1987 г., на вершине популярности, их производство было приостановлено, чтобы уступить место серии машин IBM PS/2, использовавших улучшенную магистраль Micro Channel и призванных одним махом прихлопнуть производителей АТ-аналогов. (Однако машины PC/AT продолжали процветать, поскольку производители их аналогов, как и многие покупатели, сначала игнорировали новинку IBM, улучшенные качества которой требовали несуществующего программного обеспечения.) В PC/AT используется микропроцессор 80286 и расширенная (но совместимая) магистраль исходных PC: дополнительный (и необязательный) разъем для добавочных 8 бит данных, 4 бит адресов и 5 линий IRQ (со срабатыванием, как и прежде, по фронту). В результате 16-разрядная шина данных и более высокая тактовая частота подняли пропускную способность магистрали до 5,3 Мбайт/с, что в сочетании с расширением адресного пространства и увеличением числа уровней прерываний сделали PC/AT весьма серьезным микрокомпьютером. Магистраль PC/AT (иногда называемая Industry Standard Architecture, или ISA - стандартная промышленная архитектура) даже допускает нескольких ведущих на магистрали, хотя ее возможности в этом отношении ограничены. Платы, предназначенные для исходных PC, будут работать и на PC/AT (если они обладают необходимым быстродействием), так как усовершенствования, собранные на дополнительном разъеме, можно игнорировать; в этом случае, конечно, вы возвращаетесь к 8-разрядной шине данных и 20-разрядному адресному пространству. АТ-совместимые компьютеры обычно эксплуатируют свою магистраль ввода-вывода на высоких скоростях, и при использовании старых вставных плат могут возникнуть дополнительные трудности синхронизации.
Магистраль Micro Channel была впервые применена в серии персональных компьютеров второго поколения IBM PS/2, появившихся в 1987 г. Магистраль характеризуется большой шириной шин адресов и данных (до 32 разрядов у моделей с микропроцессором 80386), 11 уровнями разделяемых прерываний (чувствительных к уровню), возможностью работы нескольких ведущих шины и асинхронным протоколом. Платы, подключаемые к магистрали Micro Channel, не содержат запаянных адресов портов ввода-вывода; адреса (вместе с другими конфигурационными характеристиками) назначаются ЦП в процессе загрузки на основе информации, прочитанной в ПЗУ на плате. Это приятное качество избавляет вас от необходимости настраивать каждую плату с помощью микропереключателей или беспокоиться о возможности наложения адресных пространств разных плат. Платы Micro Channel характеризуются очень небольшими геометрическими допусками, что связано с использованием разъемов с расстоянием между контактами всего 1,27 мм.
Читать дальшеИнтервал:
Закладка: