Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]
- Название:Искусство схемотехники. Том 1 [Изд.4-е]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1993
- Город:Москва
- ISBN:5-03-002337-2 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] краткое содержание
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.
На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.
Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.
Искусство схемотехники. Том 1 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Конденсатор фильтра.Конденсатор фильтра выбирается достаточно большой емкости для уменьшения пульсаций до приемлемой величины и рассчитывается на достаточное напряжение, чтобы выдержать худший вариант — отсутствие нагрузки и максимальное напряжение сети. Для схемы на рис. 6.17 пульсации составят 1,5 В (двойное ампл. значение) при полной нагрузке. Из опыта проектирования можно рекомендовать использование электролитических конденсаторов, подобных тем, которые используются в ЭВМ (они выпускаются в виде цилиндров с резьбовым выводом с одной стороны), например типа Sprague 36D. На небольшие значения емкостей большинство изготовителей выпускают конденсаторы такого же качества в варианте с осевыми выводами (по одному проводнику торчит с каждого конца), например типа Sprague 39D. Помните о большом допуске значений емкости!
Здесь полезно вернуться к разд. 1.27 , где впервые обсуждался вопрос о пульсациях. Всегда, кроме случая импульсных стабилизаторов ( разд. 6.19 и следующие), можно прикинуть напряжение пульсаций, считая выходной ток постоянным и равным максимальному току нагрузки. Действительно, вход подключенного к схеме стабилизатора потребляет постоянный ток. Это упрощает расчеты, поскольку разряд конденсатора происходит по линейному закону и не надо возиться с постоянными времени или экспонентами (рис. 6.18).

Рис. 6.18.
Например, вы хотите выбрать конденсатор фильтра для нестабилизированной части источника питания +5 В, 1 А, и предположим, что уже выбрали трансформатор с эффективным значением напряжения вторичной обмотки 10 В, обеспечивающий после выпрямителя 12 В постоянного тока на пике пульсации при полном токе нагрузки. При минимальном падении напряжения на проходном транзисторе стабилизатора на 2 В входное напряжение стабилизатора не должно никогда падать ниже +7 В (знакомая вам ИМС 723 требует +9,5 В, но соответствующие трехвыводные стабилизаторы, описанные ниже, в разд. 6.16 , оказываются более покладистыми). Так как надо подстраховаться от возможных отклонений напряжения в сети на 10 % в любую сторону, максимальный размах пульсаций не должен превышать 2 В за период. Тогда 2 В= T( dU/ dT) = ТI/ С= 0,008 с x 1,0/С, откуда С = 4000 мкФ.
Электролитический конденсатор 5000 мкФ на 25 В — это выбор с подстраховкой из-за возможного 20 %-ного допуска значения емкости конденсатора. При выборе конденсатора фильтра не забывайте о следующем: конденсатор излишне большой емкости не только съедает пространство, но и увеличивает нагрев трансформатора (уменьшая угол проводимости и тем самым увеличивая отношение I эфф / I ср ). Кроме того, это увеличивает и нагрузки на выпрямитель.
«Гасящий» резистор с СИД, установленные параллельно выходу на схеме рис. 6.17, разряжают конденсатор за несколько секунд в условиях отсутствия нагрузки. Это полезно, так как, если конденсатор источника питания остается заряженным после того как источник выключен, можно легко повредить какие-нибудь схемные элементы, ошибочно считая, что напряжения в схеме нет.
Выпрямители.Прежде всего следует отметить, что диоды, применяемые в источниках питания, это совсем не то, что малосигнальные диоды 1N914, применяемые в схемотехнике. Сигнальные диоды рассчитаны на высокое быстродействие (несколько наносекунд), малые токи утечки (несколько наноампер) и малую емкость (несколько пикофарад); они могут выдерживать ток до 100 мА, а напряжение пробоя редко превосходит 100 В. Выпрямительные диоды и мосты, предназначенные для работы в источниках питания, выдерживают ток от 1 до 25 А и более, а напряжение пробоя их - от 100 до 1000 В. У них сравнительно большие токи утечки (от микроампер до миллиампер) и довольно большая емкость переходов. Они не предназначены для высоких скоростей переключения. Перечень ряда широко применяемых типов выпрямителей приведен в табл. 6.4.
Типичными представителями выпрямителей являются устройства серии 1N4001-1N4007, рассчитанные на ток 1 А, с напряжением обратного пробоя от 50 до 1000 В. Серия 1N5625 рассчитана на 3 А, что является почти наивысшим возможным значением тока для элемента в герметичном корпусе с выводами под печатный монтаж (охлаждение за счет теплопроводности выводов). Популярная серия IN 1183А - типичные сильноточные, оснащенные штыревыми выводами выпрямители, с расчетным током 40 А и напряжением пробоя до 600 В. Популярны и мостовые выпрямители в пластиковых корпусах, монтируемые на печатных платах, с расчетным током 1 и 2 А и монтируемые на шасси, рассчитанные на 25 А и более. Для тех применений, где важно высокое быстродействие (например, преобразователи постоянного тока, см. разд. 6.19 ), используются диоды с быстрым восстановлением, например одноамперные диоды серии 1N4933. В низковольтных схемах может оказаться желательным использование диодов Шоттки, например серии 1N5823 с прямым падением напряжения менее 0,4 В при токе 5 А.
Источники опорного напряжения
Необходимость в хорошем источнике опорного напряжения часто возникает во многих схемах. Например, вам нужно построить прецизионный источник стабилизированного питания с лучшими характеристиками, чем у готовых стабилизаторов типа 723 (поскольку интегральные схемы стабилизаторов рассеивают заметную мощность из-за наличия встроенных проходных транзисторов, они могут довольно ощутимо нагреваться с соответствующим дрейфом параметров), или нужно построить прецизионный источник тока (т. е. схему со стабилизированным выходным током). Далее, есть еще одна область, в которой нужны прецизионные источники опорных напряжений (но не прецизионные источники питания), — это проектирование точных вольтметров, омметров или амперметров.
Существуют два вида источников опорного напряжения - стабилитроны и так называемые источники опорного напряжения с шириной запрещенной зоны полупроводника (« U БЭ - стабилитроны», см. разд. 6.15 ); каждый из них может использоваться как сам по себе, так и в составе ИМС источника опорного напряжения.
6.14. Стабилитроны
Простейшим видом источников опорного напряжения является стабилитрон — прибор, который мы рассматривали в разд. 1.06 . В сущности это диод, работающий при обратном смещении на участке, соответствующем напряжению пробоя, где ток пробоя очень быстро возрастает при дальнейшем росте напряжения. Чтобы использовать этот диод в качестве источника опорного напряжения, надо обеспечить прохождение через него приблизительно постоянного тока. Обычно это делается с помощью резистора, подключенного к достаточно высокому напряжению, и таким образом строится наиболее примитивный стабилизированный источник.
Читать дальшеИнтервал:
Закладка: