Одд Нильсен - Свет и время. Размышления на границе естествознания и Богопознания
- Название:Свет и время. Размышления на границе естествознания и Богопознания
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1992
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Одд Нильсен - Свет и время. Размышления на границе естествознания и Богопознания краткое содержание
СВЕТ И ФИЗИЧЕСКАЯ ПРИРОДА
Волны
Резонанс
Двойственная природа света
Материя не существует — она происходит
Законы природы и причинность
Все относительно
Космос
Что было сначала — масса или энергия?
Пространство
Более высокие измерения
Прошлое в настоящем
Обратимость времени
НАШИ ЧУВСТВА И ВНЕШНИЙ МИР
Где создаются впечатления?
Ограниченность наших чувств
На что способны слух и зрение
О ЧЕЛОВЕЧЕСКОМ РАЗУМЕНИИ
О концепциях и определениях
Прерывность и цельность
О принципе дополнительности
У границы
Образы света
РЕЛИГИЯ СВЕТА
Насколько достоверна Библия?
Библейская картина мира
Дерево познания
Он Сам
Дерзая верить
Что такое вера?
Немыслимые возможности
С точки зрения вечности
ВРЕМЯ И ВЕЧНОСТЬ
Знамение пророка Ионы
Разговор на кухне
Смерть, где твое жало?
«Смерть, где твоя победа?»
Воскресение
Мрак
Все новое
То, что не прейдет
Истина
Ясность
Свет и время. Размышления на границе естествознания и Богопознания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
где п — так называемая постоянная Планка, а т — масса частицы. Следовательно, нет возможности точно определить местоположение электрона в пространстве и одновременно измерить его скорость. В принципе, мы можем продемонстрировать, что частица находится в некой точке, только наблюдая ее там. Но для такого наблюдения
требуется крайне коротковолновый свет или гамма-лучи. А этот свет неизбежно столь мощно подействует на частицу, что она отлетит прочь с непредсказуемой скоростью.
Введенный Н. Бором принцип дополнительности можно сформулировать так: для всякого физического параметра есть дополнительный параметр, и соотношение обоих параметров таково, что нет никакой возможности точно определить оба параметра в ходе одного опыта. Если в поставленном опыте один параметр точно определяется, то другой неизбежно остается неопределенным и наоборот.
Принцип неопределенности выражает некое существеннейшее свойство природы. Из него следует, что простое и понятное описание природы невозможно. Тем-то и характерна новая физика, что она отказалась от требований понятности.
Позже мы еще обсудим, почему этот подход может оказаться важным не только в чистой физике, но и в других областях.
В итоге мы обязаны заявить: свет — это отдельное и цельное явление. Его значение для нашей жизни — основное и решающее. Он же является главным переносчиком потоков энергии во всей Вселенной.
Свет представляется нам (через физические опыты и их истолкование нашими органами чувств) в двух различных образах, кажущихся взаимно непримиримыми в пределах логического мышления и нашего постижения. Из этого очевидного противоречия нет выхода. Науке пришлось с этим смириться.
Какие же общие выводы можно сделать из результатов физических исследований?
1. Мы не можем просто пренебречь явлениями или свойствами, которые выглядят взаимно противоречивыми, объявив их неверно установленными, мнимыми или неполными. Мы не можем достоверно знать, что такие явления сами по себе исключают друг друга.
2. Нам не следует отметать упомянутые явления как несущественные, тривиальные или нестоящие внимания. Их знание может оказаться решающим для человечества. Хотя никто не способен полностью понять, что такое свет или электрический ток, все же любой ребенок, повернув выключатель, может использовать оба явления полностью.
3. Возможности нашего логического мышления ограничены. Пока оно прилагается к разрешимым задачам или к наблюдаемым явлениям, его выводы можно легко проверить. Но когда оно занимается явлениями, познаваемыми лишь по их воздействию на измерительные приборы или по оставленным ими следам, мы больше не можем настаивать на требовании, чтобы его выводы были понятны и однозначны.
Материя не существует — она происходит
В наши дни всякий образованный человек знает кое-что из атомной физики о внутреннем строении вещества из атомов и молекул.
Но, зная эту теорию, мы не всегда способны осознать, что карандаш в руке, книга перед глазами, вещество отдельной буквы — все это сложено из бесчисленного множества атомов, частиц столь малых, что ряд из десяти миллионов атомов без промежутков прикроет лишь один миллиметр.
Если бы у нас было столько кирпичей, сколько атомов в одном кубическом сантиметре воздуха, мы могли бы покрыть ими всю земную поверхность на высоту 180 метров. Или будь у нас столько же атомов водорода, сколько капель воды во всех земных морях, то все вместе эти атомы весили бы лишь 50 граммов.
4. Каждый отдельный атом — это крохотное, хитрое устройство с положительно заряженным ядром в центре и отрицательными электронами, кружащимися по орбитам вокруг ядра. Диаметр атомного ядра водорода составляет около одной стотысячной всего атома. На рис. 10 изображен атом водорода с ядром, для наглядности увеличенный в тысячу раз относительно реальных пропорций атома. Следовательно, ядро и электроны занимают лишь малую часть атомного объема, а остальное — пустое пространство. Тут невольно напрашивается сравнение с солнечной системой: Солнце и планеты занимают ничтожную долю объема той части мирового пространства, где они движутся.

Рис. 10. Атом водорода состоит из ядра и одного электрона на орбите. На этом рисунке ядро увеличено в 1000 раз по сравнению с истинными пропорциями ядра и всего атома.
Планетарную модель атома первым предложил физик Эрнст Резерфорд. Он направил поток альфа-частиц (ядер гелия), испускаемых радиоактивным элементом радием, на металлическую фольгу толщиной в несколько сотых долей миллиметра. Оказалось, что большинство альфа-частиц прошло сквозь фольгу почти без помех — будто бы ее и не было. Только некоторые частицы, проходя фольгу, заметно отклонились.
Объяснением должно служить то, что эти отклонившиеся альфа-частицы столкнулись с небольшими массивными объектами — атомными ядрами. Прочие же, чьи траектории не показали значительных отклонений, могли столкнуться только с легкими электронами, отбрасывая их прочь своей в семь тысяч раз превосходящей массой.
Дальнейшие исследования показали, что атомные ядра отдельных элементов состоят из различных количеств элементарных частиц — протонов и нейтронов. С этого начались непрекращающиеся открытия новых элементарных частиц.
Все, что мы зовем материей,— предметы, с которыми мы сталкиваемся каждый день, столь твердые, массивные и плотные,— на деле, в основном, оказалось пустотой. Если вообразить, что из одного кубометра железа удалена вся пустота, то оно должно сжаться в кусок, объемом менее одной десятитысячной кубического миллиметра. Но поскольку масса атомов сосредоточена в ядрах, этот крошечный кубик будет весить около восьми тонн. Его плотность составит 140 биллионов г/см 3. Но и это меньше плотности нейтронной звезды (см. раздел «Космос»). Что касается нас самих, то немного осталось бы от наших тел, не будь они заполнены внутриатомным пространством,— разве только малая пылинка, еле видная под лупой.
Изучая Вселенную, современные астрономы пользуются еще и радиоволнами, поступающими из космических источников, так называемым радиошумом. У него разные причины, среди которых возможны даже столкновения звездных систем (галактик).
Такие столкновения вовсе не ведут к соударению отдельных звезд. Галактики настолько просторны, что, сталкиваясь, проходят друг друга насквозь так, что отдельные звезды не задевают друг друга. Между звездами остаются промежутки во много световых лет.
Мы уже указывали, что и атомы устроены столь же просторно. Однако нас не удивляет, что взяв бутылку и метнув ее в бетонную стену, мы не найдем ее целой с обратной стороны. Мы достаточно опытны, чтобы знать, что так не бывает. Причина тому — не нехватка простора для отдельных частиц, атомных ядер и электронов, составляющих данный предмет. Между ними довольно пространства, чтобы предметы без помехи проходили друг сквозь друга. Когда два
Читать дальшеИнтервал:
Закладка: