Александр Прищепенко - Шелест гранаты (издание второе)
- Название:Шелест гранаты (издание второе)
- Автор:
- Жанр:
- Издательство:Директ-Медиа
- Год:2012
- Город:Москва
- ISBN:978-5-99036-260-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Прищепенко - Шелест гранаты (издание второе) краткое содержание
В книге, которую держит в руках читатель, он найдет также исторические экскурсы, пронизанные иронией рассуждения о политике и политиках, а также — о персонажах замкнутого мира военной науки.
Во втором (электронном) издании переработан текст, существенно расширен иллюстративный ряд.
Шелест гранаты (издание второе) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
«Доверителям», заручившимся поддержкой на самом верху, удалось не только получить финансирование, но и выйти на международный уровень, «проталкивая» совместные работы с США и безудержно рекламируя свой проект в газетах. Военные неофициально предложили мне написать несколько статей в их ведомственных журналах с изложением научно-технических основ ЭМО, чтобы противопоставить хоть какие-нибудь аргументы потоку сознания экзальтированных господ. В июле появилась первая такая статья в «Морском сборнике», а чуть позже — в «Военной мысли», научно-теоретическом журнале Генерального штаба.
31 мая началась серия испытаний в Центральном физико-техническом институте министерства обороны — организации, известной богатым опытом в области регистрации ЭМИ ядерного взрыва. Восхитили спектрометры ЦФТИ: в отличие от ЦНИИХМовских, они были полностью автономны (информацию получали, вскрывая после опытов спектрометр и измеряя напряжение на накопителе, которое и было пропорционально зарегистрированной мощности РЧЭМИ). Приборы не были лишены недостатков, но представляли значительный шаг в развитии техники измерений.
В ЦФТИ был испытан Е-47, первый из нового класса излучателей — ферромагнитных генераторов частоты (ФМГЧ, рис. 5.37).



Общий вид и схема ферромагнитного генератора частоты (ФМГЧ). Мощная ударная волна нагревает ферромагнетик до температуры, превышающей точку Кюри. Освобожденное волной поле наводит ЭДС в обмотке 1, окружающей магнит 2. К обмотке подключен конденсатор 3 и колебания в высокодобротном контуре приводят к смене полярности тока, направление поля внутри магнита меняется и периодически состояние вещества за фронтом ударной волны становится существенно неравновесным, что приводит к излучению энергии. Таким образом, чередуются циклы «подкачки» энергии в контур и ее излучения. Спектр РЧЭМИ (справа) такого источника очень сложен и меняется с каждой «излучательной» полуволной тока.
Идея, положенная в основу ФМГЧ, состояла в прямом преобразовании содержащейся в ферромагнетике энергии в энергию РЧЭМИ. Конечно, ФМГЧ не может выдать больше того, что «имеет»: ударная волна служит лишь спусковым механизмом, а в излучение преобразуется небольшая часть содержащейся в постоянном магните энергии. Мощность и энергия РЧЭМИ, генерируемого ФМГЧ были почти на три порядка меньше, чем у источников с кумуляцией магнитного поля [121] На конференции по сверхсильным магнитным полям «Мегагаусс-7» сообщалось о веществах с гигантской магнитострикцией ( TbFe 2 , YCo 5 , Рг Со 5 и других) и огромной индукцией насыщения (10–20 Тл), плотность магнитной энергии в которых близка к плотности химической энергии в обычной взрывчатке. Если удастся «извлечь» эту магнитную энергию, скачок удельных характеристик устройств типа ФМГЧ будет поистине революционен: последние оставят далеко позади излучатели на основе компрессии магнитного поля.
.
Задания военных на разработку ФМГЧ не было, но не покидало предчувствие, что эта идея не пропадет всуе.
В классе уже довольно долго разрабатывавшихся ударноволновых излучателей в тот год произошла смена поколений: 09 сентября на полигоне ЦФТИ была впервые испытана сборка Е-35 (рис. 5.38) — ударно-волновой излучатель, сферический — УВИС.
УВИС продемонстрировали надежную и стабильную работу, но сложность сборки и наличие дорогой в производстве сферической детонационной разводки повышали их стоимость до уровня, немыслимого для неядерных боеприпасов. Прототип электромагнитного боеприпаса— 105 мм реактивная граната с боевой частью на основе УВИС — был создан и успешно испытан, но из-за дороговизны не имел шансов стать массовым: его можно применять только в особо ответственных случаях, для поражения важных целей, а на поле боя нужно другое оружие — «числом поболее, ценою подешевле».



Вверху: ударно-волновой излучатель, сферический (УВИС), правее — его схема.
В центре заряда из мощного взрывчатого состава на основе октогена устанавливается рабочее тело 1 — шар, выточенный из монокристалла. Поверх заряда расположен детонационный распределитель 2 (шаровой слой из поликарбоната) — уменьшенная копия аналогичной детали ядерного заряда. Плотность точек инициирования на заряде УВИС больше, чем на поверхности ядерного заряда, поскольку диаметр излучателя намного меньше, чем плутониевой сборки. Поэтому разводку в УВИС иногда делают «двухэтажной»: верхний этаж, с меньшим числом точек инициирования, возбуждает детонацию в узловых точках нижнего, а тот — в заряде.
Вокруг шара собирается магнитная система. В ее основе — два постоянных магнита, от которых к монокристаллу идут два усеченных конуса 3 из магнитномягкой стали, «собирающие» поле постоянных магнитов в область, занятую рабочим телом. Сохранению потока, создаваемого магнитами, служат и магнитопроводы 4. Кристалл устанавливается в центре системы так, чтобы его главная ось совпадала с направлением магнитного поля, иначе различия в свойствах вдоль других осей могут нарушить симметрию сжатия.
Начальное поле, создаваемое в монокристалле имеет «бочкообразную» структуру силовых линий (в центре). Усредненное значение индукции поля в монокристалле — всего 0,05 Тл, но в конечной фазе сжатия отношение размера области сжатия к начальному значению радиуса монокристалла — менее одной тысячной. Сохранись при сжатии весь поток — и индукция магнитного поля возросла бы миллион раз, а энергия — в триллион (миллион миллионов) раз! Хотя в реальной ситуации при ударно-волновой магнитной кумуляции в конечной области сжатия остается лишь мизерная часть поля, а остальное — «выбрасывается» за фронт ударной волны, преобразование оставшейся энергии в излучение существенно (нижний ряд, центр). Джоули на герц — единицы спектральной плотности энергии, ими пользуются, когда описывают непрерывные спектры излучения (континуумы), в которых присутствует огромное число частот. Проинтегрировав график численно в пределах заинтересовавшего нас диапазона, получим привычные джоули, причем тем больше, чем в более высокочастотном диапазоне ведется интегрирование.
Читать дальшеИнтервал:
Закладка: