Взлёт 2005 05
- Название:Взлёт 2005 05
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2005
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Взлёт 2005 05 краткое содержание
Прим. – с таблицами.
Взлёт 2005 05 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Работоспособность водородных ГПВРД была продемонстрирована на участке типовой траектории разгона до числа М=6,5. При этом на входе в ГПВРД воспроизводились реальные условия полета с естественным уровнем турбулентности и структурой потока невозмущенной атмосферы.
Анализ режимов течения и горения в проточном тракте ГП ВРД производился на основе информации, полученной в полете от датчиков, измерявших параметры в многочисленных точках проточного тракта. Как показала обработка полученной информации, на большей части длины тракта скорость потока соответствовала числу М= 1 – 1,5. Соответственно, полнота сгорания на режиме сверхзвука находилась в диапазоне 0,7-0,9. В ходе последнего испытательного полета полнота сгорания на режиме сверхзвукового горения составила 0,83 при коэффициенте избытка воздуха 0,85. Регистрация параметров в проточном тракте позволила провести идентификацию и верификацию математических моделей, описывающих газодинамику проточного тракта ГПВРД.
По результатам последнего полета была оценена тяга ГПВРД. Так как в процессе полета дважды включалась и выключалась подача водорода в ГПВРД, то, соответственно, изменялось и осевое ускорение ракеты. При известной массе ракеты сила тяги могла быть определена по элементарной формуле.
Все испытания проходили на полигоне у озера Балхаш при поддержке правительства и Академии Наук Казахстана. В гиперзвуковых летных экспериментах принимали непосредственное участие ученые Казахстанского Государственного университета и Национального центра радиоэлектроники и связи. Три из пяти экспериментов были проведены при непосредственном участии и частичном финансировании национальных научных центров Франции и США.
В процессе летных испытаний ГПВРД получены следующие результаты:
• длительное время работы ГПВРД (более 77 с) при сохранении работоспособности камеры сгорания после выключения;
• камера сгорания работала на предельных режимах по температуре стенки с реализацией процесса горения при дозвуковой и сверхзвуковой скоростях потока в тракте;
• по результатам измерений параметров рабочего процесса ГПВРД и траектории полета ГЛЛ «Холод» определены тяга ГПВРД, удельный импульс тяги и коэффициент полноты сгорания в камере;
• проведена идентификация математической модели рабочего процесса ГПВРД с учетом химических реакций горения водорода в проточном тракте камеры сгорания.

Гиперзвуковые летающие лаборатории второго поколения: ГЛЛ-ВК (слева) и ГЛЛ-31 (справа)

Дальнейшее развитие программы исследований водородных ГПВРД тесно увязано с разработкой ГЛЛ второго поколения. Они предназначаются для проведения фундаментальных исследований проблем гиперзвукового полета применительно к разработкам ВКС.
Над созданием российских ГЛЛ работают такие предприятия авиационной и космической отраслей, как ЦИАМ им. Баранова, ЛИИ им. Громова, ЦНИИмаш, ЦАГИ, организации Академии Наук РФ, ОКБ ракетной техники и других отраслей промышленности. Несмотря на сложную ситуацию в стране в настоящее время активную позицию в реализации проекта перспективной ГЛЛ заняли Министерство науки и Федеральное космическое агентство.
Среди российских разработок наиболее перспективными вариантами считаются ГЛЛ второго поколения ГЛЛ-ВК и ГЛЛ-31. Их макеты демонстрировались на Международном авиакосмическом салоне МАКС-2003 в Жуковском в августе 2003 г.
В отличие от осесимметричного ГПВРД «Холод» на ГЛЛ-ВК и ГЛЛ-31 предполагается использовать ГПВРД плоской конфигурации, как наиболее интегрируемые с корпусом ЛА.
В экспериментах на наземных стендах исследовались «холодные» модели (без горения) и модели с горением. На «холодных» моделях отрабатывались воздухозаборные устройства и их взаимодействие с камерой сгорания; на моделях с горением отрабатывался рабочий процесс в камере сгорания и его влияние на работу воздухозаборника. В качестве топлива в камерах сгорания использовался либо водород, либо жидкое углеводородное топливо (керосин), либо их сочетание.
Экспериментальные модули ГПВРД, конструктивно объединяющие воздухозаборник, камеру сгорания и сопло, были детально исследованы на наземных стендах ЦАГИ и ЦИАМ при внешнем обдуве набегающим воздухом.
Основными результатами наземных исследований явились:
• подтверждение возможности осуществления устойчивого рабочего процесса в ГПВРД с реализацией сверхзвукового горения топлива в камере сгорания (М кс =1,1-1,2);
• получение устойчивого воспламенения и горения топливовоздушной смеси;
• доведение полноты сгорания до величины п=0,95 при оптимальных сочетаниях геометрии проточной части ГПВРД и способе подготовки топливовоздушной смеси;
• сохранение целостности основных элементов ГПВРД на всех исследованных режимах.
Вполне естественно, существующая наземная экспериментальная база не в состоянии обеспечить полное моделирование всех условий комплексного воздействия на двигатель аэродинамических и тепловых нагрузок на режимах с числами М>6-8. Для проведения дальнейших работ необходимо применение высокоскоростных летательных аппаратов – лабораторий, обеспечивающих высоты и скорости полета реального высокоскоростного ЛА.
ГЛЛ-31 разрабатывается ЦИАМ совместно с ЛИИ им. М.М. Громова. Она представляет из себя экономичный универсальный летно-экспериментальный комплекс, включающий самолет-носитель и ГЛЛ с исследуемым ГПВРД.
Использование высокоскоростной летающей лаборатории позволит:
• отработать запуск ГПВРД и проверить устойчивость рабочего процесса горения топлива в диапазоне чисел М>6-8;
• определить тягово-экономические характеристики ГПВРД при М>6-8;
• оценить тепловое состояние и теплозащиту элементов двигателя;
• дать сравнительный анализ характеристик воздухозаборника и камеры сгорания, полученных в аэродинамических трубах и в полете, уточнить методы пересчета результатов модельных испытаний на натурные.
Применение самолета-носителя в качестве многократно используемой разгонной ступени для запуска лаборатории позволяет по сравнению с наземным стартом значительно снизить стартовую массу ГЛЛ за счет придания ей начальной скорости М=2-2,5 и подъема на высоту до 10-20 км.
В качестве носителя могут служить надежно зарекомендовавшие себя в эксплуатации самолеты МиГ-31, Ту-22МЗ или Ил-76. Подвеска ГЛЛ-31 осуществляется под фюзеляжем самолетов МиГ-31 или Ту-22МЗ на штатных узлах крепления, а на Ил-76 – внутри фюзеляжа. Для разгона ГЛЛ-31 до требуемых чисел М на ней предлагается использовать РДТТ.
Читать дальшеИнтервал:
Закладка: