Иван Шунейко - Пилотируемые полеты на Луну
- Название:Пилотируемые полеты на Луну
- Автор:
- Жанр:
- Издательство:Государственный Комитет Совета министров СССР по науке и технике
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иван Шунейко - Пилотируемые полеты на Луну краткое содержание
Выпуск Итоги науки и техники из серии Ракетостроение, том 3, «Пилотируемые полеты на Луну, конструкция и характеристики Saturn V Apollo» является обзором и систематизацией работ, информация о которых опубликована в изданиях ВИНИТИ АН СССР в 1969—1972 гг.
В томе 3 описываются конструкция, весовые, летные характеристики и космические летные испытания ракеты-носителя Saturn V и корабля Apollo. Рассматриваются системы управления корабля Apollo, принципы прицеливания траектории полета Земля-Луна-Земля, навигация, коррекция траектории полета, методы аварийного возвращения.
Описываются полеты на Луну кораблей Apollo-11, 12, 13, 14, 15, 16 и 17, анализируется механика полета, посадка на Луну, взлет с Луны и возвращение на Землю.
Библиографический обзор литературы и рефератов, опубликованных в изданиях ВИНИТИ АН СССР, приводится в конце каждой главы.
Выпуск рассчитан на научных работников, инженеров-конструкторов, специалистов по испытанию и эксплуатации, преподавателей, аспирантов, работающих в области астронавтики, космической ракетной техники и авиации. Книга предназначается и для специалистов смежных с астронавтикой наук, интересующихся космической ракетной техникой, обеспечивающей полет человека на Луну.
Пилотируемые полеты на Луну - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
РСУ командного отсека состоит из двух независимых систем А и В. Каждая из систем А и В имеет по 6 ЖРД абляционного охлаждения, самостоятельную систему наддува баков и подачи топлива. Все оборудование РСУ командного отсека расположено под герметической кабиной экипажа в задней части командного отсека. В нормальных условиях полета обе системы А и В работают одновременно, однако, каждая система может обеспечить все управление командным отсеком (рис. 21.5).

Рис. 21.5. Схема топливной системы реактивного управления командного отсека.
Каждая из РСУ командного отсека идентична блоку РСУ служебного отсека, за исключением того, что РСУ командного отсека имеет дополнительно соединительные линии и перепускные клапаны для осуществления слива топлива и инертного газа перед посадкой командного отсека. Большинство важных деталей РСУ командного отсека сгруппировано на панелях. При неисправностях вся панель снимается и заменяется запасной.
На выходе из гелиевого бака в линии подачи гелия установлено 2 изолирующих пироклапана, они закрыты до момента отделения командного отсека перед входом в атмосферу. После открытия пироклапанов гелий проходит регуляторы, снижающие давление до 20,8 кг/см? и поступает в газовую полость топливных баков, работающих так же, как баки РСУ служебного отсека. До активизации системы топливо в баках изолируется от ЖРД разрывными диафрагмами. После активизации системы (открытие пироклапанов, изолирующих гелий под высоким давлением) увеличивается давление,которое разрывает диафрагмы в топливных магистралях, и топливо поступает к клапанам ЖРД.
Чтобы обеспечить слив топлива и гелия из РСУ перед посадкой командного отсека, в системе имеются пиротехнические клапаны, соединяющие гелиевые магистрали системы А и В, пиротехнический перепускной клапан, открывающий доступ гелию внутрь камеры топливного бака для вытеснения остатков топлива, пиротехнические клапаны, соединяющие топливные магистрали системы А и В, пиротехнические клапаны, открывающие сливные отверстия из системы.
ЖРД РСУ командного отсека существенно отличаются от ЖРД РСУ служебного отсека.
ЖРД реактивной системы управления служебного отсека и лунного корабля
ЖРД РСУ служебного отсека и лунного корабля с тягой 45,5 кг импульсного типа, радиационного охлаждения, работающие на монометилгидразине или 50% смеси гидразина и несимметричного диметилгидразина в качестве горючего и N2O4 в качестве окислителя, квазиустановившееся давление в камере сгорания 7 кг/см?. Вес ЖРД 2,27 кг.
ЖРД состоит из двух частей – камеры сгорания с соплом, оканчивающимся сечением с отношением площадей 7:1, и удлинительного сопла (рис. 21.6). Камера сгорания, механически обработанная из молибденовой поковки с кварцевым покрытием, предохраняющим молибден от окисления.

Рис. 21.6. ЖРД реактивной системы управления служебного отсека и лунного корабля
Удлинительное сопло из кобальтового сплава с восемью кольцами жесткости по наружной поверхности. Инжектор из алюминиевого сплава и нержавеющей стали с отверстиями постоянного сечения. В конструкции ЖРД имеется воспламенительная предкамера, возбуждающая горение и сводящая к минимуму детонацию, так как сильные скачки давления могут разрушить ЖРД. Детонация гасится путем опережения впрыска горючего в камеру на несколько миллисекунд до окислителя.
Внутри предкамеры 2 отверстия для окислителя и горючего. При открытии инжекторных клапанов поток топлива по прямому каналу поступает в предкамеры и возбуждает горение, остальное топливо поступает к отверстиям, окружающим предкамеры.
Вследствие гидравлического запаздывания в инжекторе воспламенение этого топлива происходит на 3 мсек позднее, чем внутри предкамеры.
Топливные инжекторные клапаны должны быстро реагировать на электрические команды «открыто», «закрыто», и обеспечивать герметическое закрытие без просачивания топлива (рис. 21.7). Клапаны монтируются непосредственно на инжекторе, имеют соленоиды с отдельными электросистемами для автоматического и ручного управления.
После поступления на ЖРД команды «открыть» топливные клапаны, проходит 9 мсек до полного открытия, поток топлива достигает камеры сгорания через 11 мсек и через 12 мсек после команды «открыть» возникает горение.

Рис. 21.7. Топливный инжекторный клапан
Характеристики ЖРД РСУ служебного отсека и лунного корабля приводятся на рис. 21.8 а,б.

Рис. 21.8 (а). Характеристики ЖРД реактивной системы управления служебного отсека и лунного корабля. Удельный импульс; суммарный импульс; состав смеси в функции времени

Рис. 21.8 (б). Тяга ЖРД в функции времени
ЖРД реактивной системы управления командного отсека
ЖРД РСУ командного отсека с тягой 42,2 кг абляционного охлаждения работают на монометилгидразине и N2O4, ква-зиустановившееся давление в камере сгорания 10,5 кг/см?. Вес ЖРД 4,08 кг (рис. 21.9). ЖРД работают главным образом в импульсном режиме, но могут использоваться и в режиме постоянной установившейся тяги. Два топливных инжекторных клапана той же конструкции, что и клапаны ЖРД РСУ командного и служебного отсеков, управляют подачей горючего и окислителя. [1—18]

Рис. 21.9. ЖРД реактивной системы управления командного отсека

Рис. 21.10. Характеристики ЖРД реактивной системы управления командного отсека. (а). Удельный импульс, суммарный импульс и состав смеси в функции времени. (б). Тяга ЖРД в функции времени.
Характеристики ЖРД РСУ командного отсека на рис. 21.10а,б.
2.2. Цифровой автопилот космического корабля Apollo
Впервые в условиях пилотируемого космического полета цифровой автопилот (ЦАП) был применен на космическом корабле Apollo.
Анализ результатов полетов кораблей Apollo с ЦАП показывает хорошее совпадение прогнозируемых и наблюдаемых процессов управления. Первое применение ЦАП на космическом корабле показало, что он во многих отношениях превосходит аналоговые автопилоты, не только обеспечивает требуемые динамические характеристики, но и обладает многими свойствами, недоступными аналоговой системе. К этим свойствам относятся автоматическая оценка и коррекция эксцентриситета вектора тяги, автоматическое изменение коэффициентов усиления по мере выгорания топлива, возможность осуществления различных режимов управления.
Читать дальшеИнтервал:
Закладка: