Станислав Горобченко - Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования»

Тут можно читать онлайн Станислав Горобченко - Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования» - бесплатно ознакомительный отрывок. Жанр: sci_tech, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования»
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2020
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Горобченко - Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования» краткое содержание

Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования» - описание и краткое содержание, автор Станислав Горобченко, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В модуле "Арматура систем антипомпажной защиты и регулирования" рассматриваются основные явления и закономерности, характеризующие протекание помпажа в компрессорных установках, схемы антипомпажной защиты и регулирования на практических примерах. Основное внимание уделено современной антипомпажной арматуре, применяемой для автоматизированных систем антипомпажной защиты и регулирования. Приведены конкретные примеры и кейсы по современной арматуре известных компаний. Рассмотрены вопросы расчета антипомпажной арматуры и особенности применения антипомпажной арматуры для конкретных типов компрессорных установок. Модуль рассчитан на слушателей дистанционного курса "Применение трубопроводной арматуры", "Трубопроводная арматура" системы дополнительного профессионального образования в арматурной отрасли.

Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования» - читать онлайн бесплатно ознакомительный отрывок

Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования» - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Станислав Горобченко
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис. 1.4. Работа компрессора в сети и определение границы помпажа

На режимах работы компрессора, близкого к оптимальному, имеет место хорошее согласование потока газа с формой элементов проточной части. При существенном отклонении режимов от оптимального из-за возникновения ударного натекания и отрывов параметры потока газа не соответствуют геометрическим характеристикам проточной части. В потоке возникают различные вторичные течения и сложные физические процессы.

Рассмотрим работу компрессора в системе в случае, когда характеристики компрессора в и системы пересекаются в одной точке, рис. 1.5.

Рис 15 Работа компрессора в системе В этих случаях точки пересечения - фото 45

Рис. 1.5. Работа компрессора в системе

В этих случаях точки пересечения характеристики компрессора в системе обеспечивают устойчивый режим работы компрессора. Если рабочая точка А расположена справа от точи К – максимума характеристики компрессора, то при кратковременном увеличении производительности ∆ V давление р ссистемы становится больше давления р ккомпрессора.

Кинетическая энергия газа, выходящего из компрессора, а, следовательно, и производительность компрессора уменьшается, т.е. восстанавливается первоначальный режим работы в точке А.

Кратковременное уменьшение производительности на ∆ V создает условия, когда р к>р с. В этом случае кинетическая энергия газа, выходящего из компрессора, а, следовательно, и производительность увеличиваются, т.е. восстанавливается первоначальный режим работы в точке А. Таким образом, любая режимная точка на нисходящем участке характеристики компрессора обеспечивает устойчивую работу компрессора.

Аналогичный ход рассуждений применяется для участка характеристики слева от точка К (важно, чтобы было одно пресечение характеристик компрессора и системы). Если в точке А кратковременно изменяется производительность (увеличивается или уменьшается), то аналогично предыдущему случаю приходим к выводу, что режимная точка может переместиться по характеристике системы в точки В или С. Следовательно в точках А, В и С работа компрессора в системе устойчива.

Работа компрессора устойчива на всем участке С-В характеристики компрессоров. Для рассмотренных случаев условием устойчивой работы компрессора в системе является условие

dp c/dV>dp k/dV

Рассмотрим работу компрессора в точке А на восходящем участке характеристики, рис. 1.6.

Рис 16 Работа компрессора на восходящем участке При уменьшении давления в - фото 46

Рис. 1.6. Работа компрессора на восходящем участке

При уменьшении давления в системе производительность компрессора становится меньше, чем требуется в системе при новом давлении (V' AA). Поэтому давление в системе будет продолжать уменьшаться до достижения точки В. Положение точки В зависит от характеристики компрессора. В этой точке производительность может быть положительной или отрицательной, рис. 1.6. б.

Так как расход системы V' Bбольше производительности компрессора (V' B>V B), давление в системе должно уменьшаться. Однако, незначительное уменьшение давления в системе приводит к переходу компрессора из режима в точке В в режим в точке С. Так как производительность компрессора становится больше требуемой для системы (V С> V' B), давление в системе растет, пока режим работы компрессора не достигнет точки К, а в системе точки К'. При незначительном увеличении давления в системе режим работы компрессора из точки К переместится в точку Е.

Так как производительность компрессора в точке Е меньше требуемой в системе точки К' (V BK), то давление снова начнет падать и компрессор достигнет режима работы в точке В, а система перейдет в точку В'. Затем все режимы повторяются.

В результате в системе – "компрессор – трубопровод" возникнут автоколебания газа, сопровождаемые внезапными изменениями производительности и давления нагнетания компрессора. Такое явление известно под названием "помпаж" компрессора, рис. 1.7.

Рис 17 Развитие помпажа во времени Говоря проще скорость движения газа - фото 47

Рис. 1.7. Развитие помпажа во времени

Говоря проще, скорость движения газа меняет свое направление на противоположное. При этом на противоположную меняется и аэродинамическая сила. Можно просто представить порядок величин аэродинамических сил, поскольку их момент относительно оси ротора требует для вращения последнего эффективной мощности приводного двигателя. При изменении таких больших сил и момента на противоположные механические нагрузки на вал, подшипники, диафрагмы и корпус компрессора в целом превышают допустимые величины.

Из-за нелинейности характеристик компрессора его рабочая точка ускоряется, приближаясь к помпажу, независимо от того двигается ли она вдоль характеристики при неизменных оборотах или скорость вращения меняется под влиянием системы автоматического регулирования (САР). Чтобы уменьшить расстояние между границей помпажа и линией настройки, САР должна учитывать влияние этого ускорения. Способность антипомпажного клапана обеспечивать быстрый выпуск газа является одной из его важнейших характеристик.

Практика эксплуатации знает случаи, когда даже непродолжительная работа на режиме помпажа приводила к разрушению компрессора. Из-за высокой частоты возникающих автоколебаний в диапазоне 05-2Гц, развитие помпажа происходит очень быстро. Чаще всего на устранение помпажа есть не более 2-3 сек, после чего происходят необратимые повреждения компрессора.

Помпаж является следствием неконтролируемого развития квазистационарных процессов в центробежном компрессоре, когда достаточно стабильное течение потока переходит в фазу вращающегося срыва и далее в помпаж. Так, в области квазистационарного течения разбросы давления и расхода (дисперсия потока по этим параметрам) слабо зависят от расхода и числа оборотов. Переходные процессы в условиях наброса и сброса нагрузки практически не влияют на дисперсию, незначительно увеличивая последнюю. В области вращающегося срыва дисперсия возрастает в среднем в 2-2,5 раза. При помпаже наблюдается ее активный рост в 20 и более раз. Темп роста дисперсии составляет на первой гармонике порядка 150 единиц в секунду. Пульсации перепада давления в области помпажа представляет собой синусоиду. Этот факт говорит о том, что помпаж – это резонансный процесс.

Исследования, проведенные в Казанском НПО "Компрессор", показали, что в области устойчивой работы ступени колеса компрессора наблюдаются низкоамплитудные пульсации давления, составляющие в основном менее 1%, в частотный диапазон пульсаций занимает практически всю область. В области вращающегося срыва амплитуда пульсаций перепада давления возрастает по отношению к первоначальной примерно на 6%. Частота пульсаций здесь не превышает 2,5 Гц. На участках помпажа частота пульсаций снижается до 1 Гц, а амплитуда возрастает до 38% по перепаду давления и 5% по давлению в диффузоре.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Горобченко читать все книги автора по порядку

Станислав Горобченко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования» отзывы


Отзывы читателей о книге Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования», автор: Станислав Горобченко. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x