Вадим Грибунин - Цифровая стеганография
- Название:Цифровая стеганография
- Автор:
- Жанр:
- Издательство:Солон-Пресс
- Год:2002
- Город:Москва
- ISBN:5-98003-011-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Грибунин - Цифровая стеганография краткое содержание
Интерес к стеганографии появился в последнее десятилетие и вызван широким распространением мультимедийных технологий. Методы стеганографии позволяют не только скрытно передавать данные, но и решать задачи помехоустойчивой аутентификации, защиты информации от несанкционированного копирования, отслеживания распространения информации по сетям связи, поиска информации в мультимедийных базах данных.
Международные симпозиумы по скрытию данных проводятся с 1996 года, по стеганографии первый симпозиум состоялся в июле 2002 года. Стеганография – быстро и динамично развивающаяся наука, использующая методы и достижения криптографии, цифровой обработки сигналов, теории связи и информации.
На русском языке стеганографии было посвящено только несколько обзорных журнальных статей. Данная книга призвана восполнить существующий пробел. В ней обобщены самые последние результаты исследований зарубежных ученых. В книге рассмотрены как теоретические, так и практические аспекты стеганографии, выполнена классификация стегосистем и методов встраивания, детально исследованы вопросы повышения пропускной способности стегоканала, обеспечения стойкости и незаметности внедрения, приведено более 50 алгоритмов встраивания данных.
Книга предназначена для студентов, аспирантов, научных работников, изучающих вопросы защиты информации, а также для инженеров-проектировщиков средств защиты информации. Также несомненный интерес она вызовет у специалистов в области теории информации и цифровой обработки сигналов.
Цифровая стеганография - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В рассматриваемой обобщенной схеме стегосистемы скрываемые сообщения М равномерно распределены во множестве сообщений Ми должны быть безошибочно переданы декодеру. Скрывающий информацию подает пустой контейнер , ключ
и сообщение М на вход стегокодера, формируя стегограмму
, передаваемую получателю по незащищенному каналу связи. Стего
перехватывается и обрабатывается нарушителем с целью разрушения или удаления сообщения М . Искаженное нарушителем стего обозначим
и опишем атакующее воздействие условной функцией распределения
. Эта обработка включает, как частный случай, формирование искаженного стего в виде
, где
есть детерминированное отображение.
Нарушителю полезно знать описание стегосистемы, используемой скрывающим информацию, и использовать это знание для построения более эффективного атакующего воздействия . В частности, если известная нарушителю система информационного скрытия не использует секретного ключа
, нарушитель способен декодировать сообщение М и затем удалить его из стего
. Поэтому необходимо хранить описание бесключевой стегосистемы в секрете. Заметим, что история развития систем защиты информации, в частности, криптографических систем, свидетельствует, что не стоит надеяться на сохранение в тайне принципов построения системы защиты при ее широком применении. Поэтому нашим основным предположением является: нарушитель знает распределения всех переменных в стегосистеме и само описание стегосистемы, но не знает используемого секретного ключа (принцип Керкхофа для систем защиты информации).
Пусть контейнер , стего X и модифицированное нарушителем стего Y принадлежат одному и тому же множеству X. Декодер получателя вычисляет оценку
исходного скрываемого сообщения
. Если
, то атакующий сумел разрушить защищаемую стегосистемой информацию.
Рассмотрим часто используемую схему построения системы ЦВЗ, представленную на рис. 3.2. В данной схеме учитывается, что сообщение M обычно не принадлежит алфавиту Xи имеет длину отличную от длины контейнера . Например, если ЦВЗ представляет собой изображение фирменного знака производителя информационной продукции, то такой водяной знак по форме представления и по своим характеристикам существенно отличается от заверяемого контейнера. Поэтому скрываемое сообщение (ЦВЗ) M преобразуется в кодовую последовательность
длиной N символов,
. Эта операция преобразует водяной знак M к виду, удобному для встраивания в контейнер
. Заметим, что на рис. 3.2 показан случай, когда это преобразование независимо от контейнерного сигнала.
Рис. 3.2. Структурная схема стегосистемы водяного знака при активном противодействии нарушителя
Заверенное водяным знаком стего в общем случае формируется по правилу , где
есть функция встраивания по ключу
. В обозначении функции встраивания неявно указывается, что она выполняет преобразования над блоком длины N . В простейшем примере встраивание может выполняться по правилу
для
, где переменные
,
и
принадлежат конечному алфавиту
. В современных системах водяного знака применяются сложные построения функции
, учитывающие характеристики чувствительности органов зрения или слуха человека и не являющиеся аддитивными [15]. Преобразование
должно быть удобным для скрывающего информацию, а также должно минимизировать вносимые искажения в контейнер при условии обеспечения требуемой устойчивости к атакам нарушителя. Оптимальное построение таких функций представляет сложную задачу.
Формально определим вносимые искажения в стратегиях скрывающего информацию и нарушителя. Это завершает математическое описание стегосистемы и позволяет определить скорость безошибочной передачи для стегосистемы, представленной на рис. 3.1.
Пусть искажения в стегосистеме оцениваются в соответствии с ограниченной неотрицательной функцией вида где
. Используемая мера искажения симметрична:
, выполнение равенства
означает совпадение
. Следовательно, используемая мера искажения является метрикой. Метрика искажений расширяется на последовательности длиной N символов
и
следующим образом:
. Теория информационного скрытия использует классические метрики искажения, такие как метрики Хэмминга и Евклида, а также метрики, учитывающие особенности слуховой или зрительной чувствительности человека [16].
Интервал:
Закладка: