Вадим Грибунин - Цифровая стеганография
- Название:Цифровая стеганография
- Автор:
- Жанр:
- Издательство:Солон-Пресс
- Год:2002
- Город:Москва
- ISBN:5-98003-011-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Грибунин - Цифровая стеганография краткое содержание
Интерес к стеганографии появился в последнее десятилетие и вызван широким распространением мультимедийных технологий. Методы стеганографии позволяют не только скрытно передавать данные, но и решать задачи помехоустойчивой аутентификации, защиты информации от несанкционированного копирования, отслеживания распространения информации по сетям связи, поиска информации в мультимедийных базах данных.
Международные симпозиумы по скрытию данных проводятся с 1996 года, по стеганографии первый симпозиум состоялся в июле 2002 года. Стеганография – быстро и динамично развивающаяся наука, использующая методы и достижения криптографии, цифровой обработки сигналов, теории связи и информации.
На русском языке стеганографии было посвящено только несколько обзорных журнальных статей. Данная книга призвана восполнить существующий пробел. В ней обобщены самые последние результаты исследований зарубежных ученых. В книге рассмотрены как теоретические, так и практические аспекты стеганографии, выполнена классификация стегосистем и методов встраивания, детально исследованы вопросы повышения пропускной способности стегоканала, обеспечения стойкости и незаметности внедрения, приведено более 50 алгоритмов встраивания данных.
Книга предназначена для студентов, аспирантов, научных работников, изучающих вопросы защиты информации, а также для инженеров-проектировщиков средств защиты информации. Также несомненный интерес она вызовет у специалистов в области теории информации и цифровой обработки сигналов.
Цифровая стеганография - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Для извлечения ЦВЗ используется инверсная формула, аналогичная (6.4).
Данный алгоритм позволяет скрыть довольно большой объем данных в исходном изображении: до четверти от размеров исходного изображения.
А30 (D.Kundur [14]).
Также, как и в предыдущем алгоритме, исходное и внедряемое изображения подвергаются вейвлет-преобразованию. Для встраивания используются все коэффициенты детальных поддиапазонов.
Множество этих коэффициентов разбивается на неперекрывающиеся блоки размером . Блоки обозначаются
, где
, а k и l , соответственно местоположение коэффициента и уровень разрешения.
Водяной знак прибавляется к элементам исходного изображения по формуле
, (6.28)
где S — коэффициент масштаба, вычисляемый по формуле
, (6.29)
C ( u,v ) — взвешивающая матрица, определяющая частотную чувствительность системы зрения человека, Т — оператор ДПФ.
Таким образом, алгоритм использует довольно сложную модель человеческого зрения. Для обнаружения в детекторе может быть использовано как вычисление корреляционной функции, так и визуальное сравнение.
6.2. Стеганографические методы на основе квантования
6.2.1. Принципы встраивания информации с использованием квантования. Дизеризованные квантователи
Под квантованием понимается процесс сопоставления большого (возможно и бесконечного) множества значений с некоторым конечным множеством чисел. Понятно, что при этом происходит уменьшение объема информации за счет ее искажения. Квантование находит применение в алгоритмах сжатия с потерями. Различают скалярное и векторное квантование. При векторном квантовании, в отличии от скалярного, происходит отображение не отдельно взятого отсчета, а их совокупности (вектора). Из теории информации известно, что векторное квантование эффективнее скалярного по степени сжатия, обладая большей сложностью. В стеганографии находят применение оба вида квантования.
В кодере квантователя вся область значений исходного множества делится на интервалы, и в каждом интервале выбирается число его представляющее. Это число есть кодовое слово квантователя и обычно бывает центроидом интервала квантования. Множество кодовых слов называется книгой квантователя. Все значения, попавшие в данный интервал, заменяются в кодере на соответствующее кодовое слово. В декодере принятому числу сопоставляется некоторое значение. Интервал квантования обычно называют шагом квантователя.
Встраивание информации с применением квантования относится к нелинейным методам. В работе [41] было показано, как может быть построена подобная «слепая» стегосистема, пропускная способность которой эквивалентна пропускной способности стегосистемы, имеющей на приеме исходный сигнал. При этом делается предположение о гауссовском характере исходного сигнала.
Модель стегосистемы, не требующей наличия исходного сигнала в декодере представлена на рис. 6.3.
Рис. 6.3 Модель «слепой» стегосистемы
Передаваемое сообщение m имеет ограниченную энергию для выполнения требования его незаметности. Помехами являются исходный сигнал и еще одна гауссовская помеха — шум обработки (квантования). Кодеру исходный сигнал известен, декодер должен извлечь ЦВЗ m без знания обеих составляющих помех. В работе [40] Костасом предложен метод борьбы с помехами, который, однако, является непрактичным в силу необходимости выполнения полного перебора кодовых слов в книге большого размера. Поэтому, были предложены многочисленные улучшения метода Костаса, заключающиеся в применении различных структурированных квантователей (например, решетчатых или древовидных).
Как было показано в главе 5, наиболее предпочтительно внедрение информации в спектральную область изображения. Если при этом используются линейные методы, то встраивание ЦВЗ производят в средние полосы частот. Это объясняется тем, что энергия изображения сосредоточена, в основном, в низкочастотной (НЧ) области. Следовательно, в детекторе ЦВЗ в этой области наблюдается сильный шум самого сигнала. В высокочастотных (ВЧ) областях большую величину имеет шум обработки, например, сжатия. В отличие от линейных, нелинейные схемы встраивания информации могут использовать НЧ области, так как мощность внедряемого ЦВЗ не зависит от амплитуды коэффициентов. Это объясняется тем, что в нелинейных алгоритмах скрытия не используется корреляционный детектор, коэффициенты малой и большой амплитуды обрабатываются одинаково.
Итак, как показано на рис. 6.3, внедряемый ЦВЗ m определенным образом модулируется и складывается с исходным сигналом x , в результате чего получается заполненный контейнер s(x,m) . Этот контейнер может рассматриваться и как ансамбль функций от x , проиндексированных по m , т. е. s m(x) . Эти функции обладают следующими свойствами:
— каждая из них должна быть близка, визуально неотличима от x ;
— точки одной функции должны находиться на достаточном расстоянии от точек другой функции, чтобы обеспечить возможность робастного детектирования ЦВЗ.
В качестве таких функций может выступать семейство квантователей. Число всевозможных m определяет необходимое число квантователей; индекс m определяет используемый квантователь для представления ЦВЗ m . Для случая m = 2 мы получаем бинарный квантователь. На рис. 6.4 поясняется принцип встраивания информации с применением модуляции индекса квантования (МИК). Для вложения бита , точка изображения отображается в одно из близлежащих кодовых слов. Минимальное расстояние между кодовыми словами различных квантователей определяет робастность схемы ЦВЗ.
В работе [38, 39] рассматривается применение в схеме МИК так называемого дизеризованного квантователя. Дизеризация заключается в том, что перед квантованием к сигналу добавляется некоторое число d i , которое вычитается после квантования:
. (6.30)
Интервал:
Закладка: