Вадим Грибунин - Цифровая стеганография
- Название:Цифровая стеганография
- Автор:
- Жанр:
- Издательство:Солон-Пресс
- Год:2002
- Город:Москва
- ISBN:5-98003-011-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Грибунин - Цифровая стеганография краткое содержание
Интерес к стеганографии появился в последнее десятилетие и вызван широким распространением мультимедийных технологий. Методы стеганографии позволяют не только скрытно передавать данные, но и решать задачи помехоустойчивой аутентификации, защиты информации от несанкционированного копирования, отслеживания распространения информации по сетям связи, поиска информации в мультимедийных базах данных.
Международные симпозиумы по скрытию данных проводятся с 1996 года, по стеганографии первый симпозиум состоялся в июле 2002 года. Стеганография – быстро и динамично развивающаяся наука, использующая методы и достижения криптографии, цифровой обработки сигналов, теории связи и информации.
На русском языке стеганографии было посвящено только несколько обзорных журнальных статей. Данная книга призвана восполнить существующий пробел. В ней обобщены самые последние результаты исследований зарубежных ученых. В книге рассмотрены как теоретические, так и практические аспекты стеганографии, выполнена классификация стегосистем и методов встраивания, детально исследованы вопросы повышения пропускной способности стегоканала, обеспечения стойкости и незаметности внедрения, приведено более 50 алгоритмов встраивания данных.
Книга предназначена для студентов, аспирантов, научных работников, изучающих вопросы защиты информации, а также для инженеров-проектировщиков средств защиты информации. Также несомненный интерес она вызовет у специалистов в области теории информации и цифровой обработки сигналов.
Цифровая стеганография - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Рис. 6.4. Отображение точки изображения в близлежащее кодовое слово
Таким образом, семейство дизеризованных квантователей образуется на основе одного квантователя Q и вектора дизеризации d длиной L . Рассмотрим для примера бинарный скалярный равномерный квантователь Q с размером шага . Семейство дизеризованных квантователей может быть получено, например, путем генерации в качестве вектора d (1) случайной равномерно распределенной последовательности длиной L , члены которой принимают значения из диапазона
. В качестве вектора d (2) выбираем
. (6.31)
Интересной особенностью рассмотренного дизеризованного квантователя является то, что ошибка квантования не зависит от входного сигнала [43].
Дизеризованный квантователь может применяться и в развитии техники расширения спектра сигнала в стеганографии. Изменение обычного метода встраивания с расширением спектра заключается в простой замене сложения на операцию квантования. Вложение информации при помощи сигналов с расширением спектра может быть представлено как
, (6.32)
где u — нормализованный псевдослучайный вектор. Это выражение может быть переписано в виде
, (6.33)
где - проекция сигнала x на вектор u :
. Теперь заменим операцию сложения
на операцию квантования. Тогда формула для встраивания ЦВЗ будет иметь вид
. (6.34)
6.2.2. Обзор алгоритмов встраивания ЦВЗ с использованием скалярного квантования
А31 (C.-J. Chu [44]). В данном алгоритме к цветному изображению первоначально применяется пятиуровневое целочисленное вейвлет-преобразование. ЦВЗ представляет собой последовательность ±1. Модификации подвергаются только высокочастотные коэффициенты голубой компоненты, так как человеческий глаз наименее чувствителен к искажениям в этой области спектра. Перед встраиванием ЦВЗ двоичное представление коэффициентов сдвигается вправо, а после встраивания — влево. За счет этого достигается робастность к возможному последующему квантованию. Коэффициенты встраиваются в соответствии со следующей формулой:
, (6.35)
где определяет мощность ЦВЗ w i , а яркость соответствующего пиксела изображения —
.
Извлечение ЦВЗ происходит в отсутствие исходного изображения, а искаженный коэффициент голубого канала оценивается на основе близлежащих коэффициентов. При этом находится разность между принятым коэффициентом и его оценкой, и бит ЦВЗ определяется исходя из ее знака:
(6.36)
А32 (Hsu [42]). В этом алгоритме в качестве ЦВЗ используется бинарное изображение размером вдвое меньше исходного. Оба изображения подвергаются кратномасштабному разложению: контейнер декомпозируется при помощи вейвлет-преобразования (фильтр Добеши-6, два уровня), а ЦВЗ преобразуется при помощи понижающей разрешение функции, описанной в стандарте JBIG (Joint Binary Image Group). Таким образом, к каждому изображению применяется соответствующее ему преобразование. ЦВЗ с уменьшенным разрешением будем называть остаточным. Остаточный ЦВЗ интерполируется (то есть между всеми пикселами вставляются нули) и вычитается из начального ЦВЗ. В результате получается разностный ЦВЗ, энергия которого значительно меньше остаточного.
И разностный и остаточный ЦВЗ встраиваются в вейвлет-образ исходного изображения. При этом внедрение осуществляется только в ВЧ-НЧ и НЧ-ВЧ области. Область НЧ-НЧ не используется, так как значения коэффициентов большие, а значит велик шум изображения, а область ВЧ-ВЧ не используется, так как в ней большую величину имеет шум обработки: коэффициенты в ней малы и будут удалены после сжатия. Для большей робастности внедрение ЦВЗ выполняется «через столбец» в каждую из областей: в одну внедряются четные столбцы, а в другую — нечетные. Перед встраиванием биты ЦВЗ перемешиваются по псевдослучайному закону. Процесс внедрения показан на рис. 6.5. Как видно из рисунка, остаточный ЦВЗ встраивается в более энергетически значимые области изображения, чем разностный. Тем самым достигается согласование между изображением-контейнером и ЦВЗ.
Рис. 6.5. Встраивание остаточного и разностного ЦВЗ
Надо отметить, что этот алгоритм вряд ли является стойким к операциям обработки сигнала: так как вейвлет-преобразование прекрасно концентрирует энергию изображения в НЧ-областях, ВЧ-коэффициенты будут малы. Поэтому они будут удалены алгоритмом сжатия вместе с вложенной информацией. Другим недостатком алгоритма является то, что для декодирования ЦВЗ требуется наличие в декодере исходного изображения.
6.2.3. Встраивание ЦВЗ с использованием векторного квантования
В предыдущем разделе рассматривался случай, когда на вход квантователя подавались скалярные значения, и каждое кодовое слово квантователя представляло собой единичный отсчет выхода источника. Стратегия квантования, которая предусматривает работу с последовательностями или блоками отсчетов называется векторным квантованием. Проблема в этом случае состоит в генерации множества последовательностей, называемой кодовой книгой. Этот процесс проиллюстрирован на рис. 6.6.
Рис. 6.6. Векторное квантование
Читать дальшеИнтервал:
Закладка: