Вадим Грибунин - Цифровая стеганография
- Название:Цифровая стеганография
- Автор:
- Жанр:
- Издательство:Солон-Пресс
- Год:2002
- Город:Москва
- ISBN:5-98003-011-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Грибунин - Цифровая стеганография краткое содержание
Интерес к стеганографии появился в последнее десятилетие и вызван широким распространением мультимедийных технологий. Методы стеганографии позволяют не только скрытно передавать данные, но и решать задачи помехоустойчивой аутентификации, защиты информации от несанкционированного копирования, отслеживания распространения информации по сетям связи, поиска информации в мультимедийных базах данных.
Международные симпозиумы по скрытию данных проводятся с 1996 года, по стеганографии первый симпозиум состоялся в июле 2002 года. Стеганография – быстро и динамично развивающаяся наука, использующая методы и достижения криптографии, цифровой обработки сигналов, теории связи и информации.
На русском языке стеганографии было посвящено только несколько обзорных журнальных статей. Данная книга призвана восполнить существующий пробел. В ней обобщены самые последние результаты исследований зарубежных ученых. В книге рассмотрены как теоретические, так и практические аспекты стеганографии, выполнена классификация стегосистем и методов встраивания, детально исследованы вопросы повышения пропускной способности стегоканала, обеспечения стойкости и незаметности внедрения, приведено более 50 алгоритмов встраивания данных.
Книга предназначена для студентов, аспирантов, научных работников, изучающих вопросы защиты информации, а также для инженеров-проектировщиков средств защиты информации. Также несомненный интерес она вызовет у специалистов в области теории информации и цифровой обработки сигналов.
Цифровая стеганография - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Следовательно, вычитая величину из S , и деля результат на
, получим результат r , нормированный к 1. Детектор ЦВЗ, используемый в этом методе, вычисляет величину r, задаваемую формулой
. (7.6)
Пороговая величина обнаружения теоретически лежит между 0 и 1, с учетом аппроксимации этот интервал сводится к [0 — ε; 1 + ε]. Опытным путем установлено, что для того чтобы определить действительно ли определенный ЦВЗ находится в сигнале, пороговое значение ЦВЗ должно быть выше 0,7. Если требуется большая достоверность в определении наличия ЦВЗ в сигнале, пороговое значение необходимо увеличить. Работа кодера и декодера представлены на рис. 7.1.
На рис. 7.2 показана эмпирическая функция плотности вероятности для аудиосигнала с ЦВЗ и без ЦВЗ. Эмпирическая функция плотности вероятности аудиосигнала без ЦВЗ показана непрерывной кривой, пунктирная кривая описывает эмпирическую функцию плотности вероятности аудиосигнала с встроенным ЦВЗ. Оба распределения были вычислены с использованием 1000 различных значений ЦВЗ при отношении сигнал-шум 26 дб.
Рис. 7.1. Блок-схема стегокодера и стегодекодера
Рис. 7.2. Функция плотности распределения величины обнаружения для сигналов с ЦВЗ и без ЦВЗ
Внедрение в один аудиосигнал большого количества различных ЦВЗ приводит к увеличению слышимости искажений. Максимальное число ЦВЗ ограничено энергией каждого из них. Декодер способен правильно восстановить каждый ЦВЗ при условии использования кодером уникальных ключей. На рис. 7.3 показан пример обнаружения ЦВЗ с использованием 1000 различных ключей, из которых только один — верный [1].
Рис. 7.3. Распознавание заданного ключа встраивания ЦВЗ
В работе [1] проверялась стойкость рассматриваемого метода внедрения информации к сжатию MPEG до скоростей 80 кб/с и до 48 кб/с. После восстановления при сжатии до скорости 80 кб/с можно наблюдать незначительное уменьшение пороговой величины обнаружения в аудиосигналах с ЦВЗ (рис. 7.4). При сжатии аудиосигнала до 48 кб/с появляются звуковые эффекты, ощутимо снижающие качество сигналов с ЦВЗ.
Стойкость алгоритма встраивания ЦВЗ к фильтрации проверена применением к нему скользящего фильтра средних частот и фильтра нижних частот. Аудиофайлы с внедренным ЦВЗ профильтрованы скользящим фильтром средних частот длины 20, который вносит в аудиоинформацию значительные искажения.
Рис. 7.4. Влияние сжатия данных на ЦВЗ
Рис. 7.5. Влияние на ЦВЗ применения к аудиосигналу скользящего фильтра средних частот
На рис. 7.5 показано, как изменяется пороговая величина обнаружения при применении вышеописанного фильтра. В общем, порог обнаружения увеличивается в отфильтрованных сигналах. Это происходит по причине того, что функция плотности распределения сигналов после фильтрации сдвигается вправо по сравнению с относительной функцией распределения сигналов, не подвергавшихся фильтрации.
ЦВЗ сохраняется и при применении к аудиосигналу фильтра нижних частот. Однако при фильтрации аудисигналов с ЦВЗ фильтром нижних частот Хэмминга 25-го порядка с частотой среза 2205 Гц имело место уменьшение вероятности обнаружения наличия ЦВЗ.
Для проверки стойкости ЦВЗ к передискретизации Р. Бассиа и И. Питасом аудиосигналы были передискретизированы на частоты 22050 Гц и 11025 Гц и назад на начальную частоту. ЦВЗ сохранялся.
При переквантовании аудиосигнала из 16-битного в 8-битный и обратно внедренный ЦВЗ сохраняется, несмотря на частичную потерю информации. На рис. 7.6 показано насколько хорошо ЦВЗ сохраняется в 1000 аудиосигналах при их переквантовании в 8-битные отсчеты и обратно в 16-битные.
Рис. 7.6. Влияние переквантования сигнала на ЦВЗ
Девиация функции плотности распределения переквантованного сигнала увеличивается, как и в случае применения фильтра нижних частот, следовательно, имеет место уменьшение эффективности обнаружения.
7.2. Внедрение информации модификацией фазы аудиосигнала
Метод, предлагающий использовать слабую чувствительность системы слуха человека к незначительным изменениям фазы сигнала, был предложен В. Бендером, Н. Моримото и др.
Внедрение информации модификацией фазы аудиосигнала — это метод, при котором фаза начального сегмента аудиосигнала модифицируется в зависимости от внедряемых данных. Фаза последующих сегментов согласовывается с ним для сохранения разности фаз. Это необходимо потому, что к разности фаз человеческое ухо более чувствительно. Фазовое кодирование, когда оно может быть применено, является одним из наиболее эффективных способов кодирования по критерию отношения сигнал-шум.
Процедура фазового кодирования состоит в следующем:
1. Звуковой сигнал разбивается на серию N коротких сегментов
рис. 7.7(а), 7.7(б).
2. К n -му сегменту сигнала применяется k -точечное дискретное преобразование Фурье, где К = I/N , и создаются матрицы фаз
и амплитуд
для
(рис 7.7(в)).
3. Запоминается разность фаз между каждыми двумя соседними сегментами рис. (7.7(г)).
(7.7)
4. Бинарная последовательность данных представляется, как и -
(рис 7.7(д)),
.
Интервал:
Закладка: