Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Название:Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2019
- Город:СПб.
- ISBN:978-5-4461-1254-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей краткое содержание
Какие подходы и технологии считаются наиболее перспективными? Какие крупные открытия возможны в ближайшие годы? Можно ли создать по-настоящему мыслящую машину или ИИ, сравнимый с человеческим, и как скоро? Какие риски и угрозы связаны с ИИ и как их избежать? Вызовет ли ИИ хаос в экономике и на рынке труда? Смогут ли суперинтеллектуальные машины выйти из-под контроля человека и превратиться в реальную угрозу?
Разумеется, предсказать будущее невозможно. Тем не менее эксперты знают о текущем состоянии технологий, а также об инновациях ближайшего будущего больше, чем кто бы то ни было.
Вас ждут блестящие встречи с такими признанными авторитетами, как Р. Курцвейл, Д. Хассабис, Дж. Хинтон, Р. Брукс и многими другими. В формате PDF A4 сохранен издательский макет книги.
Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Роджер пытался математически описать, каким образом организм, получивший от некоего стимула положительные или отрицательные последствия, выясняет, какие еще вещи с большой вероятностью дают те же последствия. Как он выходит за рамки конкретного опыта и формирует общие истины? Как смотрит из прошлого в будущее? Байесовский вывод позволил Роджеру очень элегантно сформулировать свою теорию. Для более масштабируемой реализации этой теории ему требовались нейронные сети. С тех пор я по большей части продолжал работу с этими идеями и методами.
Затем я поступил в аспирантуру в MIT, где до сих пор работаю профессором. После защиты диссертации Роджер помог мне перевестись в Стэнфорд, где я пару лет был ассистентом профессора психологии, прежде чем вернулся в MIT, чтобы заниматься когнитивистикой. Как видите, я пришел в ИИ из естествознания, но рассматриваю человеческий интеллект с математической, вычислительной и инженерной точек зрения.
Свою деятельность я называю «обратным проектированием ума». Потому что пытаюсь, как инженер, воспроизвести работающий мозг и построить его модель с помощью технических средств. Я рассматриваю ум как невероятную машину, возникшую в результате таких процессов, как биологическая и культурная эволюция, обучение и развитие. Как инженер, я пытаюсь понять, для каких задач предназначен наш мозг и как он их решает.
М. Ф.: Насколько для карьеры в области ИИ важны изучение мозга и когнитивистика? Не кажется ли вам, что computer science уделяется слишком большое внимание?
Дж. Т.: Я всегда рассматривал эти вещи как две стороны одной медали. Меня восхищает сама возможность запрограммировать интеллектуальную машину. Моя специальность не биология, а скорее психология или когнитивистика. Я занимаюсь в основном программным обеспечением интеллекта, а не аппаратными средствами мозга, хотя единственный разумный научный подход предполагает взаимосвязь между ними. Отчасти именно это привело меня в MIT, где есть соответствующий факультет. В середине 1980-х гг. его называли факультетом психологии, но там всегда делался упор на биологию.
Если рассмотреть историю отрасли, окажется, что многие, если не большинство, самых лучших, интересных, новых и оригинальных идей в области ИИ сгенерированы людьми, которые пытались понять, как работает человеческий интеллект. Сюда входят и математические основы того, что мы сейчас называем глубоким обучением и обучением с подкреплением, и изобретение математической логики Джоном Булем, и работа Лапласа по теории вероятностей. Из более поздних примеров можно вспомнить интерес к математике познания и к тому, как люди рассуждают в условиях неопределенности, который привел Джуду Перла к работе над байесовскими сетями для вероятностного вывода и причинного моделирования в ИИ.
М. Ф.: Вы описали свою работу как попытку «обратного проектирования ума». Как выглядит ее методология? Насколько я знаю, вы много работаете с детьми.
Дж. Т.: Меня с самого начала крайне интересовал вопрос, каким образом наш мозг извлекает столь многое из столь малого. Даже если ребенок не сможет повторить действия, которые ему показали, он все равно поймет, что происходит.
Мы знаем, что корреляция и причинность – не одно и то же и что корреляция не всегда подразумевает причинность. Можно измерить две переменные в наборе данных и увидеть, что они коррелируют, но это не значит, что значение первой обусловливает значение второй. Этот факт часто цитируется, чтобы показать, насколько сложно из данных наблюдений вывести причинно-следственный механизм. Но все же люди, и даже дети, делают это. Посмотрите, как быстро ребенок осваивает управление смартфоном.
Еще студентом вместе с Роджером Шепардом я начал искать, какие же механизмы позволяют людям делать обобщения на базе всего одного или нескольких примеров. Сначала мы использовали принципы байесовской статистики, байесовского вывода и байесовских сетей, то есть формулировали работу ментальных моделей причинно-следственной структуры с помощью теории вероятностей. В 1990-х гг. инструменты, разработанные математиками, физиками и статистиками для статистических выводов на базе небольших наборов данных, стали применяться для машинного обучения, что произвело настоящую революцию. Фактически в сфере ИИ начался переход от ранней символической парадигмы к парадигме статистической.
Затем мы стали задумываться над тем, откуда берутся ментальные модели, и стали изучать интеллект младенцев и детей. К концу 2000-х гг. мы добились большого прогресса, строя на основе байесовских моделей такие аспекты интеллекта, как восприятие, причинно-следственные связи, а также обнаружение сходства, изучение значений слов, планирование, принятие собственных решений и понимание чужих.
Еще 10 лет назад было построено множество удовлетворительных моделей индивидуальных когнитивных способностей, но объединяющей их теории так и не появилось. Нет у нас и модели здравого смысла.
Если посмотреть, как технологии научились делать вещи, ранее доступные только людям, то можно сказать, что у нас есть настоящий ИИ, просто не такой, каким его задумывали основатели отрасли.
М. Ф.: Это основная цель ваших исследований?
Дж. Т.: Да, в последние годы я действительно заинтересовался универсальным ИИ. И пытаюсь понять, как подобное реализуется с инженерной точки зрения. Сильное влияние на меня оказали исследования моих коллег из Гарварда Сьюзан Кэри и Элизабет Спелке. Они изучали интеллект младенцев и маленьких детей. Я уверен, что на ранней стадии развития работают самые глубокие формы обучения.
С работами Элизабет Спелке должен познакомиться любой, кто собирается заниматься ИИ уровня человека. Она убедительно показала, что уже в возрасте от двух до трех месяцев дети понимают определенные базовые вещи, например, что мир состоит из трехмерных физических объектов, которые не могут просто взять и исчезнуть. Мы называем это свойство постоянством объекта. Раньше считалось, что дети осознают это примерно к году, но Спелке и другие показали, что во многих отношениях наш мозг с самого рождения уже подготовлен к пониманию мира с точки зрения физических объектов и интенциональных агентов.
М. Ф.: Вопрос важности предустановленных структур в ИИ породил множество дискуссий. Показывают ли исследования Спелке, что такие структуры нужны и важны?
Дж. Т.: Идея создания машины, которая изначально обладает интеллектом ребенка и постепенно обучается, была высказана Аланом Тьюрингом в той же статье, где он описал свой тест. Я допускаю, что это одна из самых старых идей в сфере ИИ. Еще в 1950 г. Тьюринг предположил, как построить машину, умеющую проходить его тест, – не стремиться повторить мозг взрослого человека, а начать с детского мозга и постепенно научить его всему. Он сравнил детский мозг с только что купленным блокнотом: маленький механизм и множество чистых листов.
Читать дальшеИнтервал:
Закладка: