Адам Кучарски - Идеальная ставка
- Название:Идеальная ставка
- Автор:
- Жанр:
- Издательство:Литагент Синдбад
- Год:2019
- Город:М.
- ISBN:978-5-00131-056-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Адам Кучарски - Идеальная ставка краткое содержание
Исследование принципов и механизмов азартных игр – не всегда бескорыстное – позволило некоторым из них совершить открытия в самых разных областях науки, от статистики до теории хаоса и конструирования искусственного интеллекта. Кое-кто из них еще и выиграл кругленькую сумму.
«Азартные игры – настоящая фабрика невероятных идей, поражающих своей оригинальностью и дерзостью» – убежден математик и журналист Адам Кучарски, рассказывающий в «Идеальной ставке» увлекательную историю обмена идеями между наукой и индустрией азартных игр.
Идеальная ставка - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Знать, как каждый отдельный фактор влияет на результат, важно не только в тотализаторе. Пока Гальтон и Пирсон изучали механизм наследования, пивоварня «Гиннесс» работала над увеличением срока годности своего стаута. Эту задачу поручили Уильяму Госсету – талантливому молодому статистику, зимой 1906 года прошедшему стажировку в лаборатории Пирсона.
Если игровые синдикаты не имели возможности повлиять на такие факторы, как, например, вес лошади, то «Гиннессу» ничто не мешало изменить состав пива. В 1908 году Госсет при помощи метода регрессии рассчитал количество хмеля, непосредственно влияющее на срок годности пива. Пиво без добавления хмеля могло храниться 12–17 дней, с добавлением оптимального количества хмеля – до нескольких недель.
Бетторы не слишком интересуются тем, какие факторы влияют на результат игры, – им гораздо важнее знать, насколько верны их предсказания. Казалось бы, проще всего проверить эффективность системы прогнозирования по итогам уже состоявшихся забегов. Но здесь возникают свои сложности.
Во время Второй мировой войны будущий исследователь теории хаоса Эдвард Лоренц работал в метеослужбе Воздушного корпуса армии США в Тихоокеанском регионе. Осенью 1944 года его команда выдала серию идеально точных прогнозов о погодных условиях для полетов между Сибирью и островом Гуам. Во всяком случае, по сообщениям летчиков, совершавших рейсы в указанных областях, прогнозы оправдались на все 100 %. Вскоре Лоренц выяснил истинную причину столь невероятной точности: поглощенные выполнением других задач, пилоты вообще не вели наблюдение за погодой и просто повторяли прогноз метеослужбы.
Та же проблема возникает, когда игровые синдикаты проверяют свои прогнозы при помощи данных, которые использовались для калибровки системы. Создать видимость идеальной модели легко. Достаточно выделить для каждого забега некий показатель, характеризующий победителя, а затем обобщить эти показатели в полном соответствии с данными выигравших лошадей. Вам кажется, что вы создали безупречную модель, но на самом деле вы лишь подогнали свой прогноз под заранее известные результаты.
Если игроки хотят узнать, сработают ли их стратегии в будущем, они должны проверять их на свежих данных. Поэтому синдикаты, собирая информацию о состоявшихся забегах, игнорируют часть результатов, строят систему прогнозов на оставшихся, а затем тестируют ее на прежде не использовавшихся данных. Это позволяет проверить, как модель ведет себя в реальных условиях.
Тестирование на свежих данных помогает убедиться, что модель удовлетворяет научному принципу «бритвы Оккама», суть которого состоит в следующем: если перед вами стоит выбор между несколькими объяснениями наблюдаемого события, лучше всего взять самое простое. Другими словами, если вы хотите построить модель реального процесса, вы должны отсечь от нее все, чему нет объяснения.
Проверка прогнозов на свежих данных позволяет бетторам не перегружать модель информацией, но этого мало: необходимо также определить степень ее точности. Это можно сделать при помощи статистического показателя под названием коэффициент детерминации. Коэффициент может иметь величину от 0 до 1 и применяется для измерения аналитического потенциала регрессионной модели. Показатель «0» говорит о том, что модель не работает вообще (игроки могли бы с тем же успехом выбирать победителя наугад); показатель «1» означает, что прогнозы точно совпадают с полученными результатами. Модель Болтон и Чэпмена имела показатель 0,09. Это было, конечно, лучше, чем выбор лошади наугад, однако множество факторов все же остались за рамками модели.
Ряд трудностей возник и с самими данными, которые использовали исследователи. Информация о 200 забегах поступала к ним с пяти американских ипподромов и содержала массу скрытых факторов: менялись условия скачек, у лошадей менялись соперники и жокеи. Будь у Болтон и Чэпмена больше данных, эту проблему можно было бы решить, но они располагали весьма ограниченной информацией – две сотни заездов, и все. Впрочем, в менее изменчивых условиях их система потенциально могла работать.
Если вы ищете экспериментальную площадку для изучения лошадиных скачек, Гонконг – это то, что вам нужно. Забеги здесь проводятся на одной-двух дорожках, так что комфортные лабораторные условия вам обеспечены. Объект вашего исследования также будет относительно стабилен: в США по всей стране соревнуются десятки тысяч лошадей, тогда как в Гонконге существует закрытый пул примерно из тысячи животных. В год проводится не более 600 соревнований, и одни и те же лошади соревнуются друг с другом снова и снова, а значит, вы сможете наблюдать похожие события по нескольку раз, к чему всегда стремился Пирсон. В Гонконге, в отличие от Монте-Карло с его лентяями-журналистами, достаточно доступной информации о лошадях и результатах их выступлений.
Начав анализировать гонконгские данные, Бентер понял, что для прогноза надо проанализировать от 500 до 1000 забегов. Если взять меньше, не удастся учесть влияние на итог разных факторов, и модель будет нерелевантной. С другой стороны, дальнейшее расширение выборки не скажется на улучшении прогноза.
В 1994 году Бентер опубликовал статью с изложением своей базовой модели ставок. Он включил в статью таблицу, в которой сопоставил свои прогнозы с исходом реальных скачек. Его результаты выглядели впечатляюще. Модель, за исключением нескольких мелких недочетов, казалась на редкость реалистичной. Тем не менее Бентер предупредил, что у нее есть один существенный недостаток: если кто-то попытается сделать ставку на основании его прогноза, результаты могут оказаться катастрофическими.
Предположим, на вас нежданно-негаданно свалилось богатое наследство, и вы решили потратить деньги на приобретение книжного магазина. С чего вам начать? Можно составить список магазинов, которые вы хотели бы купить, посетить каждый из них – посмотреть ассортимент, пообщаться с сотрудниками, провести аудит. А можно обойтись без всех этих сложностей и просто сесть у дверей магазина и подсчитать, сколько посетителей в него входит и сколько из них выходит с покупкой. Эти две противоположные стратегии отражают два основных способа инвестирования. Если вы досконально изучаете состояние компании, это значит, что вы проводите фундаментальный анализ; если вы наблюдаете, как компанию оценивают другие, значит, вы проводите технический анализ.
В прогнозах Болтон и Чэпмена был использован фундаментальный анализ. Этот метод основан на владении качественной информацией и максимально тщательной ее обработке. Мнения и взгляды знатоков скачек в анализе не учитываются. Здесь не имеет значения, как поступают другие игроки и на каких лошадей они ставят. Фундаментальный анализ игнорирует рынок азартных игр. С тем же успехом можно делать прогнозы в вакууме.
Читать дальшеИнтервал:
Закладка: