Адам Кучарски - Идеальная ставка
- Название:Идеальная ставка
- Автор:
- Жанр:
- Издательство:Литагент Синдбад
- Год:2019
- Город:М.
- ISBN:978-5-00131-056-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Адам Кучарски - Идеальная ставка краткое содержание
Исследование принципов и механизмов азартных игр – не всегда бескорыстное – позволило некоторым из них совершить открытия в самых разных областях науки, от статистики до теории хаоса и конструирования искусственного интеллекта. Кое-кто из них еще и выиграл кругленькую сумму.
«Азартные игры – настоящая фабрика невероятных идей, поражающих своей оригинальностью и дерзостью» – убежден математик и журналист Адам Кучарски, рассказывающий в «Идеальной ставке» увлекательную историю обмена идеями между наукой и индустрией азартных игр.
Идеальная ставка - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Азартные игры – это настоящая фабрика невероятных идей, простых и изощренных, дерзких и абсурдных. По всему миру игроки проверяют на прочность пределы предсказуемости и границы между порядком и хаосом. Одни умело пользуются нюансами механизма принятия решений и соревновательного инстинкта. Другие изучают странности человеческого поведения и саму природу мышления. Анализируя успешные стратегии беттинга, мы можем узнать, как азартные игры влияют на наше понимание удачи и как удачей управлять.
1
Три степени незнания
Неподалеку от лондонского отеля Ritz находится казино Ritz Club . Заведение славится своим роскошным убранством. За богато отделанными столами дежурят одетые в черную униформу крупье, стены украшены картинами эпохи Ренессанса, свет ламп отражается в позолоте внутренней отделки. К несчастью для простых игроков, казино славится еще и своей эксклюзивностью. Не каждый может испытать здесь удачу, для входа необходимо иметь клубную карту или быть постояльцем отеля, ну и, конечно, обладать солидной суммой.
Как-то вечером в марте 2004 года в Ritz Club вошла блондинка в сопровождении двух мужчин в элегантных костюмах. Новые посетители выбрали рулетку, однако эти люди не были похожи на остальных хайроллеров: они не стали пользоваться бонусами, которые казино предлагает игрокам с крупными ставками. Впрочем, их скромность себя окупила, и за ночь они выиграли 100 тысяч фунтов – сумма немаленькая, однако вполне обычная для заведения уровня Ritz Club . На следующую ночь троица вернулась и опять заняла места у стола с рулеткой. В этот раз их выигрыш был намного крупнее: после обналичивания фишек сумма составила миллион и 200 тысяч фунтов. Сотрудники службы безопасности насторожились и, когда игроки покинули зал, просмотрели записи с камер видеонаблюдения. Того, что они увидели, было достаточно для обращения в полицию, и вскоре девушка и два ее спутника были арестованы в отеле неподалеку от казино.
Уроженку Венгрии и сопровождавших ее двоих сербов обвинили в получении денег обманным путем. Как писала пресса, у мошенников был лазерный сканер, считывавший вращение рулетки. Результаты сканирования передавались на крошечный потайной компьютер, который и предсказывал, где остановится шарик. Гламур, шпионская техника – здесь было все, что нужно для сенсации. Но самое главное журналисты упустили: никто не смог точно объяснить, как можно записать движение шарика в рулетке и конвертировать данные в успешный прогноз. И наконец – разве рулетка не есть сама случайность?
Существует два способа понять принцип действия рулетки, и Анри Пуанкаре интересовали оба. Случайность была одним из множества занимавших его явлений; в начале ХХ века внимание Пуанкаре так или иначе привлекало все, что так или иначе было связано с математикой. Он был последним подлинным «универсалом» в своей дисциплине. Впоследствии ни одному из его коллег не удалось отметиться во всех областях математики и в каждой совершить интересные открытия и установить важные закономерности, как это сделал Пуанкаре.
Пуанкаре полагал, что явления, подобные рулетке, кажутся непредсказуемыми потому, что мы не знаем их причины. Он предложил классифицировать проблемы по степени нашего незнания. Если мы точно знаем первоначальное состояние объекта – например, его положение в пространстве и скорость – и как на него распространяется действие физических законов, то мы имеем дело с обычной задачкой из учебника физики. Пуанкаре назвал это первой степенью незнания: у нас есть вся необходимая информация и нужно лишь произвести несложные вычисления.
Вторая степень незнания – когда мы знаем, как на объект воздействуют физические законы, но не знаем первоначального положения объекта или не можем точно его измерить. В этом случае мы должны либо усовершенствовать систему измерения, либо ограничить область прогнозирования того, что случится с нашим объектом в ближайшем будущем. И наконец, третья, наиболее обширная степень незнания – когда мы не знаем ни первоначального состояния объекта, ни воздействия на него законов физики. Мы также сталкиваемся с третьей степенью незнания, если эти законы слишком сложны, чтобы мы описали их действие. Допустим, мы уронили банку краски в бассейн с водой. Мы можем легко спрогнозировать реакцию купающихся, но прогнозировать поведение молекул краски и воды будет намного труднее.
Однако мы можем попробовать другой подход: не изучать взаимодействие молекул между собой во всех подробностях, а понять общие закономерности. Рассматривая совокупность частиц жидкости, мы сможем проследить, как они будут распространяться и смешиваться, пока спустя определенный период времени краска не окажется рассеянной по всему бассейну. Даже ничего не зная о причине происходящего, мы можем оценить его следствие.
То же самое можно сказать и о принципе действия рулетки. Траектория шарика зависит от множества факторов, которые мы не можем отследить, наблюдая за вращающимся колесом. Так же как с молекулами воды, мы не можем делать прогнозы о конкретном вращении рулетки, если не понимаем общие закономерности, влияющие на траекторию движения шарика. Но, как предполагал Пуанкаре, нам не обязательно знать, что именно заставило конкретный шарик остановиться здесь, а не там. Мы можем просто пронаблюдать множество вращений и сделать выводы.
Именно такими наблюдениями занимались Альберт Хибс и Рой Уолфорд в 1947 году. Оба учились в Чикагском университете, Хибс – на математическом факультете, его друг Уолфорд – на медицинском. Как-то на каникулах приятели отправились в Рино – удостовериться, так ли непредсказуема игра в рулетку, как полагают устроители казино.
Большинство современных рулеток выполнены в оригинальном французском дизайне: 38 ячеек с числами от 1 до 36, поочередно раскрашенных в черный и красный цвет, и ячейки с цифрами 0 и 00 – зеленого цвета. Когда выпадает «зеро», выигрывает казино. Если мы сделаем серию ставок по одному доллару на свой любимый номер, то в среднем можем ожидать один выигрыш на каждые 38 попыток, и в этом случае казино заплатит нам 36 долларов. Таким образом, если мы будем крутить рулетку 38 раз, мы потратим 38 долларов, но выиграть в среднем сможем лишь 36 долларов. Это значит, что наши потери составят два доллара, или по пять центов на каждый спин – запуск рулетки.
Казино получает доход благодаря равномерному распределению выпадения всех чисел рулетки при каждом вращении. Однако рулетка, как и всякий механизм, не застрахована от дефектов или износа при длительной работе. Хибс и Уолфорд искали именно такие столы, где числа распределялись неравномерно. Обнаружив число, выпадающее чаще остальных, они могли извлечь из этой ситуации выгоду. Друзья снова и снова смотрели, как крутится рулетка, надеясь уловить нечто необычное. Но тут возникает вопрос: что значит «необычное»?
Читать дальшеИнтервал:
Закладка: