Адам Кучарски - Идеальная ставка
- Название:Идеальная ставка
- Автор:
- Жанр:
- Издательство:Литагент Синдбад
- Год:2019
- Город:М.
- ISBN:978-5-00131-056-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Адам Кучарски - Идеальная ставка краткое содержание
Исследование принципов и механизмов азартных игр – не всегда бескорыстное – позволило некоторым из них совершить открытия в самых разных областях науки, от статистики до теории хаоса и конструирования искусственного интеллекта. Кое-кто из них еще и выиграл кругленькую сумму.
«Азартные игры – настоящая фабрика невероятных идей, поражающих своей оригинальностью и дерзостью» – убежден математик и журналист Адам Кучарски, рассказывающий в «Идеальной ставке» увлекательную историю обмена идеями между наукой и индустрией азартных игр.
Идеальная ставка - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Осенью 2013 года социальная сеть Facebook представила общественности команду AI, которой предстояло заняться разработкой интеллектуальных алгоритмов. К тому времени пользователи Facebook загружали по 350 миллионов фотографий ежедневно. Ранее компания уже предложила набор инструментов, позволяющих обрабатывать эту лавину информации. Одним из них была функция распознавания: компания стремилась дать пользователям возможность автоматически находить и идентифицировать лица на фото. Весной 2014 года команда AI отчиталась о создании программы DeepFace , которая знаменовала собой значительный прогресс в области распознавания лиц.
Искусственный мозг DeepFace состоит из девяти уровней нейронов. Первые уровни выполняют подготовительную работу: находят изображение лица на картинке и центрируют его. Последующие уровни выделяют характерные для идентификации черты, такие как область между глазами и бровями. Конечные нейроны сводят воедино информацию о произведенных измерениях – от формы глаз до расположения губ – и с ее помощью осуществляют идентификацию. Facebook отлаживал работу нейросети, используя фотографии четырех тысяч человек. Это была самая большая когда-либо собранная портретная база данных: в среднем на каждое лицо приходилось более тысячи изображений.
После отладки программы пришло время ее протестировать. Чтобы посмотреть, насколько успешно DeepFace справляется с поставленной задачей, разработчики предложили ей идентифицировать лица из Labeled Faces in the Wild – базы данных, содержащей тысячи изображений человеческих лиц в повседневных ситуациях. Эти фотографии оказались отличным материалом для тестирования способностей программы к распознаванию, поскольку были сняты под разными ракурсами и при разном освещении. Впрочем, никому из нас это не мешает с легкостью узнавать одну и ту же персону на разных снимках: в ходе онлайн-эксперимента участники смогли распознать 99 % изображений.
Но DeepFace не намного отстала от человека. После долгой отладки и многочисленных замен искусственных нейронов программа распознала 97 % лиц. Даже когда ей предложили распознать лица с роликов на YouTube (с менее четкими и более мелкими изображениями), DeepFace справилась в 90 % случаев.
У покерной программы Даля на приобретение опыта тоже ушло немало времени. Чтобы натренировать ее, ученый заставил множество ботов непрерывно играть друг с другом – компьютерные программы сделали миллионы ставок и миллионы раз блефовали, совершенствуя свой искусственный интеллект. Когда боты поднаторели в покере, Даль заметил, что они способны на удивительные вещи.
В своем фундаментальном труде «Вычислительные машины и разум», написанном в 1952 году, Тьюринг отмечает, что многие люди скептически относятся к возможности создания искусственного интеллекта. Один из аргументов – его еще в XIX веке выдвинула математик Ада Лавлейс – заключается в том, что машины не способны ничего создавать сами, они делают лишь то, что им предписано. Значит, удивить нас машина не может.
Тьюринг не соглашался с Адой Лавлейс, утверждая, что машинам часто удавалось его удивлять. Обычно он списывал подобные «сюрпризы» на собственный недосмотр – ошибки в вычислениях, небрежность, допущенную при написании программы. От подобных грехов не застрахованы ни примитивные вычислительные машины, ни высокоскоростные финансовые алгоритмы. Как мы уже видели, такие ошибки часто приводят к неприятным неожиданностям.
Однако иногда ошибка может сыграть на пользу компьютеру. В самом начале поединка с Каспаровым DeepBlue сделал неожиданный, тонкий и – по-другому не скажешь – умный ход, чем привел противника в полное замешательство. Вместо того чтобы взять уязвимую пешку, DeepBlue передвинул ладью в позицию обороны. Каспаров не понимал, какую цель преследовал компьютер. По общему мнению, этот маневр повлиял на дальнейший ход матча, убедив российского гроссмейстера, что DeepBlue значительно превосходит всех его предыдущих оппонентов.
На самом деле, совершая этот ход, DeepBlue не руководствовался ничем. Попав в ситуацию, для которой у него не было инструкций, – что, согласно теореме Гёделя, рано или поздно должно было случиться, – компьютер начал действовать хаотично. Переломный момент в стратегии DeepBlue не был свидетельством его изобретательности; машине просто-напросто… повезло.
Тьюринг признавал: причиной подобных сюрпризов становятся действия человека и правила, которые он устанавливает – или не устанавливает. Но покерные боты Даля совершали неожиданные поступки не из-за человеческой оплошности. Сюрпризы возникали скорее как следствие процесса обучения. Во время тренировочных игр Даль заметил, что один из ботов использует тактику «флоатинг». После открытия трех общих карт игрок коллирует – принимает ставку соперника без повышения. Как только открывается четвертая карта – терн, игрок резко поднимает ставку в надежде напугать противника и заставить его сбросить карты. Сам Даль с подобной техникой ранее не встречался, но опытным покеристам она хорошо известна. Кроме того, флоатинг требует большого мастерства. Чтобы удачно его выполнить, игрок должен уметь не только оценивать имеющиеся у него на руках карты, но и «считывать» соперника. Кого-то взять на испуг легче, кого-то – труднее, а покеристу, выполняющему флоатинг, меньше всего на свете нужно агрессивно поднять ставку и вместо того, чтобы забрать банк, быть вынужденным раскрыть карты.
На первый взгляд, это чисто человеческая стратегия. Как может бот самостоятельно ей научиться? Ответ: это неизбежно. Иногда игра зависит от холодного расчета гораздо больше, чем мы думаем. Такую же закономерность фон Нейман обнаружил в отношении блефа. Это не каприз людской натуры, а тактика, необходимая при оптимальной стратегии.
В своей статье в New York Times Каплан пишет, что игроки часто общаются с компьютером Даля как с человеком. Они придумывают ему прозвища и даже обращаются к нему так, будто за стеклом перед ними находится не металлическая коробка, а живой соперник. Похоже, компьютерному картежнику удается заставить своих партнеров забыть о том, что они играют с программой. Если бы тест Тьюринга представлял собой не интервью, а партию в техасский холдем, бот Даля его несомненно прошел бы.
В том, что люди воспринимают покерных ботов как самостоятельных личностей, а не продукт деятельности программиста, возможно, нет ничего странного. В конце концов, самые лучшие компьютерные игроки превосходят в мастерстве своих создателей. В бота не нужно загружать большой объем информации – он научится всему сам. Таким образом, даже мало что понимающий в игровых стратегиях разработчик способен создать сильного виртуального покериста. «Можно делать удивительные вещи, зная при этом совсем мало», – отмечал Джонатан Шеффер. По правде говоря, ученые из Университета Альберты, хоть и создали одного из лучших покерных ботов в мире, сами были далеко не блестящими игроками. «Большинство из нас вообще не разбираются в покере», – признавался один из разработчиков, Майкл Джонсон.
Читать дальшеИнтервал:
Закладка: