Джеймс Глик - Хаос. Создание новой науки

Тут можно читать онлайн Джеймс Глик - Хаос. Создание новой науки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство АСТ: CORPUS, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джеймс Глик - Хаос. Создание новой науки краткое содержание

Хаос. Создание новой науки - описание и краткое содержание, автор Джеймс Глик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.

Хаос. Создание новой науки - читать онлайн бесплатно ознакомительный отрывок

Хаос. Создание новой науки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джеймс Глик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Отделив действие силы тяжести на тело определенной массы от действия сопротивления воздуха – что стало блестящим достижением научной мысли, – Галилей вплотную приблизился к сути инерции и измерению количества движения. Все же в реальном мире маятники ведут себя так, как описано в парадигме Аристотеля: они останавливаются.

Закладывая основу грядущей смены парадигм, физики столкнулись с тем, что принимали за пробел в знаниях о простых системах вроде маятника. К началу XX века диссипативные [71] Процессы, в которых энергия в конечном счете переходит в тепло. процессы, к примеру трение, были уже изучены и учитывались в уравнениях. На занятиях студентам рассказывали, что нелинейные системы, как правило, не имеют решения, и это вполне соответствовало истине [72] Решения физических нелинейных систем существуют (иначе никакого процесса не было бы), но аналитически (то есть в классе известных функций, свойства которых хорошо изучены математиками) найти их очень часто невозможно, как, например, для системы Лоренца; поэтому сегодня используют методы вычислительной математики для построения приближенных решений. . Но утверждение, что эти системы большей частью представляют собой исключения из правил, истиной не являлось. Поведение целого класса движущихся объектов – маятников, в том числе двойных, спиралей и гибких стержней, щипковых и смычковых струн – описывается классической механикой. К жидкостным и электрическим системам применили сходный математический аппарат. Однако почти никто во времена безраздельного господства «классики» не подозревал, что стоит только уделить нелинейным элементам должное внимание – и обнаружится, что в динамических системах таится хаос.

Физик не способен до конца проникнуть в тайны турбулентности и сложности, не поняв феномена маятника. Но до конца постичь эти тайны в первой половине XX века было попросту невозможно. По мере того как хаос стал сводить воедино изучение различных систем, динамика маятников расширялась, вбирая в себя поведение даже таких продуктов высоких технологий, как лазеры и джозефсоновские контакты [73] Соединение сверхпроводников, разделенных диэлектриком. Протекание тока через слой диэлектрика в этом случае называется эффектом Джозефсона по имени британского физика Брайана Джозефсона, предсказавшего это явление в 1962 году (Нобелевская премия 1973 года). Эффект Джозефсона используется в построении высокоточных измерительных приборов и в других областях. . Ход некоторых химических реакций оказался подобен поведению маятника [74] Например, реакции Белоусова – Жаботинского. . Нечто похожее прослеживалось и в биении сердца. По словам одного ученого, динамика маятника таила в себе новые возможности для «психологии и психиатрии, экономического прогнозирования и, возможно, даже для социальной эволюции» [75] На практике тот, кто дает толчок, всегда может произвести более или менее регулярное движение, предположительно, используя неосознаваемый нелинейный механизм ответа. .

Представьте качели на детской площадке. Они набирают скорость, устремляясь вниз, и теряют ее по мере движения вверх; часть энергии постоянно утрачивается из-за трения. Допустим, что качели приводит в движение некий механизм, подобный часовой пружине. Как подсказывает нам интуиция, в какой бы точке ни началось движение, оно станет постоянным. Качели будут раскачиваться взад и вперед, поднимаясь каждый раз на одну и ту же высоту. Такое возможно [76] Хорошо подводит итог многих попыток анализа возможных трудностей в понимании механизма работы простого колеблющегося маятника: D'Humieres D., Beasley M. R., Huberman Β. Α., Libchaber A. «Chaotic States and Routes to Chaos in the Forced Pendulum» // Physical Review A Vol. P. 3483–3496. . Однако, как ни удивительно, качели могут колебаться и весьма странным образом: сначала взлетать высоко, затем низко, никогда не останавливаясь и не повторяя тот же рисунок движения, что наблюдался прежде [77] Майкл Берри исследовал физическую природу этой игрушки как в теории, так и экспериментально. В работе «The Unpredictable Bouncing Rotator» он описывает спектр ее возможного поведения на языке нелинейной динамики: «теория KAM», «бифуркация периодических орбит», «гамильтонов хаос», «устойчивые неподвижные точки» и «странные аттракторы». .

Поразительно неустойчивое поведение порождается нелинейностью потока энергии на входе и выходе этого простейшего осциллятора. В нем постоянно противоборствуют две силы – сила трения, стремящаяся затормозить систему, и внешние толчки, приводящие ее в движение. Даже когда подобная система, казалось бы, находится в равновесии, это лишь видимость. Мир полон таких систем, взять хотя бы атмосферную систему, которую «заглушает» трение перемещающихся воздушных масс и воды, рассеивание тепла в открытый космос и «приводит в движение» постоянный приток солнечной энергии.

Впрочем, вовсе не непредсказуемость поведения маятников была причиной, которая подвигла физиков и математиков снова всерьез взяться за их изучение в 1960-1970-х годах. Непредсказуемость лишь подогрела интерес к проблеме. Исследователи динамики хаоса обнаружили, что неупорядоченное поведение простых систем является неким процессом созидания. Оно создавало сложность: перед взором исследователей представали причудливые объекты, иногда устойчивые, а иногда не очень, имеющие пределы или безграничные, но всегда обладающие очарованием жизни. Именно поэтому ученые, словно дети, играли в эти игрушки.

Одна такая игрушка появилась на прилавках сувенирных магазинов под названием «космические шары», или «небесная трапеция» [78] Эно. . Конструкция представляет собой два шарика, закрепленных на противоположных концах стержня, который, в свою очередь, подобно поперечине буквы Г, крепится к маятнику сверху. Третий шар, более массивный, чем первые два, крепится к основанию буквы Т. Качание маятника сопровождается свободным вращением верхнего стержня. Внутри у всех трех шариков находятся маленькие магниты. Однажды запустив устройство, вы наблюдаете, как оно работает. В его основание встроен электромагнит с автономным питанием, и всякий раз, когда нижний шарик приближается к основанию, он получает легкий магнитный толчок. Временами устройство качается устойчиво и ритмично, но порой его бесконечно изменчивое и не перестающее удивлять движение напоминает хаос.

Другая игрушка представляет собой сферический маятник, который, в отличие от обычного, раскачивается в любом направлении, не ограничиваясь лишь двумя. В основание устройства помещены несколько небольших магнитов, притягивающих металлический отвес. В момент остановки маятника отвес прилипает к одному из магнитов. Идея заключается в том, чтобы запустить маятник и угадать, какой из магнитов притянет к себе отвес. Предсказать это с высокой вероятностью невозможно, даже если магнитов всего три и расположены они в вершинах треугольника. Некоторое время маятник будет качаться между вершинами A и В, потом движение перейдет на сторону В и С , и в тот момент, когда отвес, казалось бы, должен притянуться к вершине С, он вновь перепрыгнет к A . Допустим, ученый, изучающий поведение такой игрушки, составит что-то наподобие карты. Запуская маятник, он выберет точку начала движения, а следующую точку обозначит красным, синим или зеленым цветом в зависимости от того, каким из магнитов будет притянут отвес. Каким в итоге получится изображение? Можно ожидать, что на нем проступят области сплошного красного, синего и зеленого цветов – там, где отвес почти наверняка притянется к определенному магниту. Но на рисунке будут видны и такие зоны, где цвета переплетаются бесконечно сложно. С какого расстояния ни рассматривай рисунок, как ни увеличивай изображение, синие и зеленые точки всегда будут соседствовать с красными. Следовательно, движение отвеса в этих областях предсказать практически невозможно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Глик читать все книги автора по порядку

Джеймс Глик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос. Создание новой науки отзывы


Отзывы читателей о книге Хаос. Создание новой науки, автор: Джеймс Глик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x