Джеймс Глик - Хаос. Создание новой науки

Тут можно читать онлайн Джеймс Глик - Хаос. Создание новой науки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство АСТ: CORPUS, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джеймс Глик - Хаос. Создание новой науки краткое содержание

Хаос. Создание новой науки - описание и краткое содержание, автор Джеймс Глик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.

Хаос. Создание новой науки - читать онлайн бесплатно ознакомительный отрывок

Хаос. Создание новой науки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джеймс Глик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Все же отыскав работу, Митчелл выяснил, что на самом деле Гёте, изучая цвет, провел ряд необычных экспериментов. Начал он, как и Ньютон, с обыкновенной призмы. Ньютон держал призму перед источником света, проецируя расщепляющийся пучок на белую поверхность; Гёте же, приложив призму к глазу, посмотрел сквозь нее и не увидел никакого цвета. Ни радуги, ни отдельных оттенков. Разглядывание сквозь призму белоснежной поверхности или ясного голубого неба давало тот же результат – полное единообразие.

Но если на белой поверхности появлялось едва заметное пятнышко или небо застилали облака, Гёте видел цветовую вспышку. Это дало ему повод заключить, что источником цвета является «чередование света и тени». Он продолжил исследовать, как люди воспринимают тени, отбрасываемые предметами, которые окрашены в разные цвета. В серии тщательно поставленных опытов использовались свечи и карандаши, зеркала и цветное стекло, свет Луны и Солнца, кристаллы, жидкости и цветные диски. Например, зажигая свечу перед листом белой бумаги в сумерках, экспериментатор держал в руках карандаш. Тень, отбрасываемая карандашом, имела чистый голубой цвет. Почему? Бумага белого цвета воспринимается как белая и в угасающем дневном свете, и в теплом мерцании свечи. Каким образом тень разделяет белое на зоны голубого и красновато-желтого? Цвет, доказывал Гёте, представляет собой «степень темноты, близкую к тени». Переведя это на современный язык, можно сказать, что источник цвета есть краевые условия и особенности.

Там, где Ньютон был редукционистом, Гёте придерживался холизма. Ньютон разбил цвет на составляющие и нашел самое основное физическое объяснение этому феномену. Гёте же, наслаждаясь видами цветущих садов и изучая живописные полотна, искал всеобъемлющее, окончательное толкование интересующего его явления. Ньютон подогнал свою теорию цвета под математическую схему, характерную для всей физики, а Гёте, к счастью или к несчастью, чувствовал к математике отвращение.

Фейгенбаум убедился в том, что идеи Гёте о явлении цветности верны. Эти идеи напомнили ему популярную среди некоторых психологов точку зрения, которая различает суровую реальность и субъективно-изменчивое ее восприятие. Цвета, воспринимаемые человеком, изменяются от случая к случаю и от человека к человеку, в чем несложно убедиться. Но, в понимании Фейгенбаума, в идеях Гёте, эмпирических и весьма определенных, таилось гораздо больше истинной научности. Вновь и вновь экспериментатор подчеркивал повторяемость своих опытов, так как для него именно восприятие цвета являлось всеобщим и объективным. Какие научные свидетельства, не зависящие от нашего восприятия, существуют для определимого и реального красного?

Фейгенбаум задался вопросом, какого рода математический формализм должен соответствовать человеческому восприятию, особенно тем его видам, которые отсеивают суетное многообразие полученного опыта, обнаруживая универсальные свойства. Красное не обязательно является светом определенной частоты, как представлялось последователям Ньютона; это территория хаотичного мира, границы которой не так-то просто описать. И все же наш ум находит красное с устойчивым и проверенным постоянством. Таковы были мысли молодого ученого-физика, далекие, казалось бы, от проблем турбулентности в жидкостях. Но все же для того, чтобы постичь, как человеческий мозг разбирается в хаосе восприятия, прежде нужно понять, как беспорядок способен породить универсальность.

Начав в Лос-Аламосе размышлять над феноменом нелинейности, Фейгенбаум понял, что из своего обучения он, в сущности, не вынес ничего полезного. Решить систему нелинейных дифференциальных уравнений, не придерживаясь примеров из учебника, было невозможно. Метод возмущений с его последовательными корректировками поддающейся решению задачи, которая, как предполагалось, близка к реальной проблеме, выглядел довольно глупым. Ознакомившись с рядом руководств по нелинейным потокам и колебаниям, ученый сделал вывод, что сколько-нибудь разумному физику они мало чем помогут. Имея в своем распоряжении лишь карандаш и бумагу для вычислений, Фейгенбаум решил начать с аналога простого уравнения, рассмотренного в свое время Робертом Мэем применительно к популяционной биологии.

С таким уравнением – его можно записать как у = r ( хх 2 ) – ученики средней школы знакомятся в курсе алгебры при построении параболы. Каждое значение x дает новое значение у, а полученная в результате кривая выражает связь между x и у в определенном диапазоне значений. Если значение x (численность популяции в текущем году) мало, то значение у (численность популяции в следующем году) также будет невелико, но больше, чем х. Кривая круто поднимается вверх. Если значение х находится в середине диапазона, то значение у велико. Но парабола выравнивается близ своей вершины и начинает снижаться так, что если значение х велико, то значение у вновь мало. Именно это и является эквивалентом скачков численности популяции в экологическом моделировании, которые предотвращают ничем не ограниченный рост, не происходящий в реальности.

Для Мэя, а затем и для Фейгенбаума главное заключалось в том, чтобы произвести это простое вычисление не один раз, а повторять его бесконечно, как в «петле обратной связи». Итоги одного подсчета служили исходными данными для следующего. Для графического представления результатов парабола оказывалась незаменимой. Надо было выбрать начальную точку на оси х, провести перпендикуляр вверх до пересечения с параболой, найти соответствующее значение на оси у и повторить вычисления уже с новым значением. Результат сначала будет «скакать» от одной точки параболы к другой, а потом, вероятно, установится на уровне устойчивого равновесия, где значения х и у равны, то есть численность популяции останется неизменной.

Казалось, нельзя было найти ничего более далекого от сложных расчетов теоретической физики. Вместо единовременного решения запутанной системы одна и та же простая операция повторялась вновь и вновь. Ставящий подобные опыты с числами будет наблюдать, подобно химику, который следит за ходом реакции, бурление внутри мензурки. Результат являл собой ряд чисел, не всегда достигавший в итоге устойчивого значения: он мог завершиться скачками значения в некотором интервале или, как разъяснял Мэй своим коллегам-биологам, изучающим популяции, ряд мог продолжать изменяться совершенно хаотичным образом настолько долго, насколько хватит терпения за ним наблюдать. Поведение числового ряда зависело от выбранного значения параметра.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Глик читать все книги автора по порядку

Джеймс Глик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос. Создание новой науки отзывы


Отзывы читателей о книге Хаос. Создание новой науки, автор: Джеймс Глик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x