Мередит Бруссард - Искусственный интеллект [Пределы возможного] [litres]

Тут можно читать онлайн Мередит Бруссард - Искусственный интеллект [Пределы возможного] [litres] - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Альпина, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Мередит Бруссард - Искусственный интеллект [Пределы возможного] [litres] краткое содержание

Искусственный интеллект [Пределы возможного] [litres] - описание и краткое содержание, автор Мередит Бруссард, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга авторитетного эксперта в области компьютерных технологий – призыв к здравомыслию. Всю свою сознательную жизнь Мередит Бруссард слышала, что технологии спасут мир, однако сегодня, продолжая восхищаться ими и участвовать в их создании, она относится к будущему не столь оптимистично.
Всеобщий энтузиазм по поводу применения компьютерных технологий, по ее убеждению, уже привел к огромному количеству недоработанных решений в области проектирования цифровых систем. Выступая против техношовинизма и социальных иллюзий о спасительной роли технологий, Бруссард отправляется в путешествие по компьютерному миру: рискуя жизнью, садится за руль экспериментального автомобиля с автопилотом; задействует искусственный интеллект, чтобы выяснить, почему студенты не могут сдать стандартизованные тесты; использует машинное обучение, подсчитывая вероятность выживания пассажиров «Титаника»; как дата-журналист создает программу для поиска махинаций при финансировании кандидатов в президенты США.
Только понимая пределы компьютерных технологий, утверждает Бруссард, мы сможем распорядиться ими так, чтобы сделать мир лучше.

Искусственный интеллект [Пределы возможного] [litres] - читать онлайн бесплатно ознакомительный отрывок

Искусственный интеллект [Пределы возможного] [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Мередит Бруссард
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1959 г. Журнал записей IBM 3 211/1. В нашем распоряжении есть компьютеры с адекватными возможностями для обработки данных и скоростью работы, достаточной для применения техник машинного обучения.

1990 г. Журнал New Scientist от 8 сентября 78/1. Когда Даг Ленам из Стэнфорда разработал Eurisko, систему машинного обучения второго поколения, ему казалось, что он создал настоящий интеллект [79] “machine, n.” .

Это определение справедливо, но не слишком точно улавливает актуальные представления ученых о машинном обучении. Так, более релевантное определение можно найти в Оксфордском словаре по информатике:

Машинное обучение

Ответвление исследовательской области искусственного интеллекта, посвященное разработке программ, обучающихся на основе опыта. Обучение может принимать различные формы – от обучения на примерах и обучения на основе аналогии до автономного постижения концепций и обучения посредством находок.

Инкрементное обучение подразумевает непрерывное улучшение за счет вновь поступающих данных – обучение по одному примеру или пакетное обучение . Существует различение двух стадий – стадии обучения и применения.

Обучение с учителем предполагает явное указание принадлежности вводимых данных классам, которые требуется выучить.

Большинство методов обучения имеет тенденцию к генерализации, что позволяет системе развивать эффективную и качественную структуру репрезентации для больших массивов тесно связанных друг с другом данных [80] Butterfield and Ngondi, A Dictionary of Computer Science. .

Это уже ближе, но все еще не совсем точно. Документация к scikit-learn, популярной библиотеке для машинного обучения на языке Python, определяет машинное обучение иначе: «Машинное обучение заключается в усваивании системой ряда особенностей массива данных и последующем применении их к новому массиву. Поэтому в области машинного обучения существует распространенная практика разделения имеющегося массива данных на две части – обучающей выборки, на основе которой характеристики выучиваются, и тестовой выборки, на базе которой проверяется результат обучения» [81] Pedregosa et al., “Scikit-Learn: Machine Learning in Python.” .

Подобное расхождение источников относительно определения феномена – редкость. Например, в определении слова «собака» вполне сходится множество источников. В то же время «машинное обучение» – достаточно новый феномен, потому неудивительно, что пока не сложилось его общепринятое определение и лингвистика до него еще не добралась.

Том М. Митчелл, профессор кафедры машинного обучения в Школе компьютерных наук Университета Карнеги – Меллона, предлагает неплохое определение машинного обучения в книге «Наука машинного обучения» (The Discipline of Machine Learning). Он пишет: «Мы считаем, что машина обучается с учетом конкретной задачи Т, системы оценки эффективности Р для конкретной задачи, основываясь на опыте Е. В зависимости от того, как мы определяем Т, Р, и Е, задачу обучения можно назвать добычей данных, автономными исследованиями, обновлением базы данных, программированием на основе примеров и т. д.» [82] Mitchell, “The Discipline of Machine Learning.” . Это определение кажется мне подходящим потому, что Митчелл использует конкретные термины для определения феномена обучения. «Обучение» машины вовсе не означает, что у нее есть металлические «мозги». Это значит, что в выполнении конкретной задачи она стала точнее – в соответствии с метрикой, определенной человеком.

Для такого обучения не нужен интеллект. Программист и консультант Джордж М. Невилл-Нил пишет в журнале Communications of the ACM :

Мы – свидетели более чем 50-летнего сражения человека и машины в шахматы, но означает ли это, что у компьютеров появился разум? Нет, и тому есть две причины. Первая заключается в том, что шахматы не призваны проверять наличие разума; в рамках этой игры исследуется определенный навык – умение играть в шахматы. Если бы я мог обыграть гроссмейстера, но при этом не был бы способен передать вам за столом соль, обладаю ли я разумом? Вторая причина заключается в том, что уверенность, будто игрой в шахматы можно проверить интеллектуальные способности, является культурным заблуждением, согласно которому игроки в шахматы – в отличие от остальных людей – гениальны [83] Neville-Neil, “The Chess Player Who Couldn’t Pass the Salt.” .

Существует три ключевых типа машинного обучения: обучение с учителем, обучение без учителя и обучение с подкреплением. Привожу определения для каждого типа, предлагаемые в известной книге под названием «Искусственный интеллект: Современный подход» (Artificial Intelligence: A Modern Approach), написанной профессором Калифорнийского университета в Беркли Стюартом Расселом и директором исследовательского отдела Google Питером Норвигом:

Обучение с учителем: компьютеру представляют пример входных данных и желаемый итог их обработки, то есть дают задание, задача программы состоит в том, чтобы изучить основные закономерности, стоящие за решением.

Обучение без учителя: программе не дают никаких итоговых результатов, предоставляя возможность самостоятельно выявить структуру входных данных. Обучение без учителя может быть как самоцелью (выявить неявные закономерности в данных), так и ступенью в обучении.

Обучение с подкреплением: компьютерная программа с определенной задачей взаимодействует с динамичной средой (целью может быть управление транспортным средством или победа в игре). По мере продвижения в пространстве задач программе представляется обратная связь – награда или наказание [84] Russell and Norvig, Artificial Intelligence. .

Обучение с учителем – наиболее простой вариант: машине предоставляется набор обучающих данных и соответствующие ему ожидаемые результаты. По сути, мы говорим машине, что хотим от нее в итоге, затем настраиваем модель до тех пор, пока не получим то, что полагаем верным.

Все три типа машинного обучения зависят от набора обучающих данных, необходимого для использования и подстройки модели обучения. Предположим, мой массив состоит из данных 100 000 владельцев кредитных карт. Он содержит все то, что кредитная компания знает о клиентах: имя, возраст, адрес, кредитную оценку заемщика, кредитную ставку, состояние счета, имена всех подписантов договора, выписку со счета, выписку времени и сумм погашения кредита. Допустим, с помощью нашей модели машинного обучения мы хотим предсказать, кто с большей вероятностью просрочит очередной платеж. Это нужно сделать потому, что после каждого просроченного платежа повышается процентная ставка по кредиту. В массиве обучающих данных есть колонка, где обозначены те, кто задерживал платеж. Мы делим наш массив на две части по 50 000 аккаунтов в каждом – на обучающую и тестовую выборки. Затем запускаем алгоритм машинного обучения на первом наборе, чтобы выстроить модель, черный ящик, который предскажет то, что мы и так знаем. Мы можем применить эту же модель к оставшимся данным и получить прогнозы о том, кто вероятнее всего опоздает с платежом. Наконец, мы сравниваем полученные прогнозы с реальными данными о просроченных платежах. Это позволяет выявить точность прогностической модели. И, если мы как разработчики нашей модели машинного обучения решим, что она достаточно точна, мы можем применить ее к прогнозированию платежей реальных заемщиков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Мередит Бруссард читать все книги автора по порядку

Мередит Бруссард - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусственный интеллект [Пределы возможного] [litres] отзывы


Отзывы читателей о книге Искусственный интеллект [Пределы возможного] [litres], автор: Мередит Бруссард. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x