Мередит Бруссард - Искусственный интеллект [Пределы возможного] [litres]

Тут можно читать онлайн Мередит Бруссард - Искусственный интеллект [Пределы возможного] [litres] - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Альпина, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Мередит Бруссард - Искусственный интеллект [Пределы возможного] [litres] краткое содержание

Искусственный интеллект [Пределы возможного] [litres] - описание и краткое содержание, автор Мередит Бруссард, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга авторитетного эксперта в области компьютерных технологий – призыв к здравомыслию. Всю свою сознательную жизнь Мередит Бруссард слышала, что технологии спасут мир, однако сегодня, продолжая восхищаться ими и участвовать в их создании, она относится к будущему не столь оптимистично.
Всеобщий энтузиазм по поводу применения компьютерных технологий, по ее убеждению, уже привел к огромному количеству недоработанных решений в области проектирования цифровых систем. Выступая против техношовинизма и социальных иллюзий о спасительной роли технологий, Бруссард отправляется в путешествие по компьютерному миру: рискуя жизнью, садится за руль экспериментального автомобиля с автопилотом; задействует искусственный интеллект, чтобы выяснить, почему студенты не могут сдать стандартизованные тесты; использует машинное обучение, подсчитывая вероятность выживания пассажиров «Титаника»; как дата-журналист создает программу для поиска махинаций при финансировании кандидатов в президенты США.
Только понимая пределы компьютерных технологий, утверждает Бруссард, мы сможем распорядиться ими так, чтобы сделать мир лучше.

Искусственный интеллект [Пределы возможного] [litres] - читать онлайн бесплатно ознакомительный отрывок

Искусственный интеллект [Пределы возможного] [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Мередит Бруссард
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

train [ «Pclass»].value_counts ()

1 216

2 184

3 491

Name: Pclass, dtype: int64

Согласно обучающим данным, 491 пассажир путешествовал 3-м классом, 184 человек было во 2-м и 216 – в 1-м.

Теперь посмотрим на число выживших:

train [ «Survived»].value_counts ()

0 549

1 342

Name: Survived, dtype: int64

Обучающие данные показывают, что 549 человек погибли, 342 – выжили.

Посмотрим теперь на данные в процентном соотношении:

print (train [ «Survived»].value_counts (normalize = True))

0 0.616162

1 0.383838

Name: Survived, dtype: float64

62 % пассажиров погибли, 38 % остались в живых. Большинство погибло в крушении. Если бы мы собирались прогнозировать выживание случайного пассажира из нашего списка, то с бо́льшей вероятностью программа бы выдала отрицательный ответ.

И можно было бы закончить на этом, ведь мы только что пришли к выводу, позволяющему сделать вполне логичные прогнозы. Но мы можем больше, так что продолжим. Есть ли какие-либо факторы, с помощью которых мы могли бы уточнить наш прогноз? Ведь кроме данных выживших у нас есть информация о классе пассажиров, имена, пол, возраст, данные о родственниках и членах семьи на борту, стоимость их билетов, номера кают и города отправления.

Pclass – лакмусовая бумажка, отражающая социоэкономический статус пассажира, подходит в качестве прогностической характеристики. Можно догадаться, что пассажиры первого класса оказались в спасательных шлюпках раньше пассажиров 3-го класса. Пол также является важным предиктором, ведь нам известно, что во время кораблекрушений работает принцип «женщин и детей спасать в первую очередь». Он восходит к 1852 г., когда транспортно-десантный корабль Британских ВМС сел на мель у побережья Южной Африки. Этот принцип работает не всегда, но часто, поэтому для социального анализа мы учитываем его.

Теперь проведем несколько сравнений и посмотрим, сможем ли мы обнаружить другие переменные, в потенциале обладающие предсказательной силой:

# Выжившие и погибшие пассажиры

print (train [ «Survived»].value_counts ())

0 549

1 342

Name: Survived, dtype: int64

# В пропорции

print (train [ «Survived»].value_counts (normalize = True))

0 0.616162

1 0.383838

Name: Survived, dtype: float64

# Мужчины выжившие и погибшие

print (train [ «Survived»] [train [ «Sex»] = ‘male’].value_counts ())

0 468

1 109

Name: Survived, dtype: int64

# Женщины выжившие и погибшие

print (train [ «Survived»] [train [ «Sex»] = ‘female’].value_counts ())

1 233

0 81

Name: Survived, dtype: int64

# Усредненное выживание мужчин

print (train [ «Survived»] [train [ «Sex»] = ‘male’].value_counts (normalize=True))

0 0.811092

1 0.188908

Name: Survived, dtype: float64

# Усредненное выживание женщин

print (train [ «Survived»] [train [ «Sex»] = ‘female’].value_counts (normalize=True))

1 0.742038

0 0.257962

Name: Survived, dtype: float64

Мы видим, что 74 % женщин и 18 % мужчин выжили. Так мы можем еще более точно определить нашу гипотезу, предположив, что, вероятнее всего, в катастрофе выжила бы женщина, а не мужчина.

Помните, что изначально нашей целью было создать колонку данных о выживших? Так вот, на основе новой информации мы можем создать ее и поставить «1» (значит «да, пассажир выжил») напротив тех 74 % женщин и «0» (то есть «нет, пассажир не выжил») у оставшихся женщин. Мы также могли бы поставить «1» у 18 % и «0» у 81 % мужчин.

Однако мы не будем так делать, поскольку это означало бы, что мы совершаем поверхностные предположения на основе только лишь пола. Известно, что в данных можно обнаружить факторы, существенно влияющие на результаты. (Если же вам действительно интересна внутренняя кухня этих процессов, я советую найти это упражнение на DataCamp либо что-то подобное в интернете.) А как насчет женщин, путешествующих третьим классом? Или первым классом? Женщин с детьми? И вот уже ручной подсчет кажется весьма трудоемким, потому давайте научим нашу модель, опираясь на известные факторы, угадывать за нас.

Для этого нам понадобится алгоритм decision tree. Помните, в машинном обучении существуют весьма полезные базовые алгоритмы? У них есть названия, такие как «дерево решений» (decision tree), «случайный лес» (random forest), «искусственная нейронная сеть» (artificial neural network), «наивный байесовский классификатор» (naive Bayes), «метод k ближайших соседей» (k-nearest neighbor) или «глубокое обучение» (deep learning). Список алгоритмов машинного обучения, представленный в Википедии, достаточно полный.

Алгоритмы поставляются пользователям в пакетах вроде того, что мы уже использовали, – pandas. На самом деле немногие самостоятельно пишут алгоритмы, гораздо проще воспользоваться уже существующими. Процесс написания алгоритма похож на изобретение нового языка программирования. Это действительно очень важно, кроме того, требует много времени. «Математика, – скажу я и всплесну руками, – это лучшее объяснение того, что задействовано во время разработки алгоритма». Извините. Если хотите знать больше, я советую почитать об этом. Это, конечно, очень интересно, но написание алгоритма не относится к нашим актуальным задачам.

Итак, теперь обучим модель на тренировочном пакете данных. По итогам небольшого исследования нам стало известно, что необходимо учитывать факторы класса и пола. Теперь нам предстоит выстроить догадки о выживших. Пускай модель попробует угадать, а мы затем сравним результаты с реальностью. Независимо от итогового процента мы получим величину точности модели.

Открою вам секрет из мира больших данных: все данные – «грязные» . Абсолютно все. Они собраны людьми, подсчитывающими все вокруг, либо посредством сенсоров – тоже созданных людьми. В каждой, казалось бы, упорядоченной колонке чисел присутствует шум, искажения. Это беспорядок. Это незавершенность. Это жизнь. Проблема заключается в том, что некорректные данные не следует учитывать. Больше того, иногда для того, чтобы алгоритмы заработали как надо, нам приходится подправлять данные.

Еще не страшно? Мне было страшно, когда я поняла это. Как журналист я не склонна подправлять что-либо. Мне необходимо проверить каждую строчку и представить подтверждения для проверяющего, редактора, или читателей – однако в машинном обучении приходится частенько делать так, чтобы все сходилось.

К физике это тоже применимо. Например, если нужно измерить температуру в конкретной точке А закрытого контейнера, необходимо измерить температуру в двух равноудаленных точках (В и С) и предположить, что температура в точке А примерно соответствует средней температуре между В и С. В статистике… ну, так это и происходит, а недостаток данных способствует неуверенности в подсчетах. Мы все пользуемся функцией fillna, чтобы заполнить пустующие значения:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Мередит Бруссард читать все книги автора по порядку

Мередит Бруссард - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусственный интеллект [Пределы возможного] [litres] отзывы


Отзывы читателей о книге Искусственный интеллект [Пределы возможного] [litres], автор: Мередит Бруссард. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x