Кай-фу Ли - Сверхдержавы искусственного интеллекта [Китай, Кремниевая долина и новый мировой порядок] [litres]
- Название:Сверхдержавы искусственного интеллекта [Китай, Кремниевая долина и новый мировой порядок] [litres]
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2019
- Город:Москва
- ISBN:978-5-00146-163-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Кай-фу Ли - Сверхдержавы искусственного интеллекта [Китай, Кремниевая долина и новый мировой порядок] [litres] краткое содержание
Но эта победа может обернуться безработицей и невиданным социальным расслоением по всему миру. Катастрофа почти неизбежна, но после серьезнейшего личного кризиса Кай-Фу Ли увидел неожиданный выход. Его укажут человечность и ответственность, а вовсе не армия умных машин.
На русском языке публикуется впервые.
Сверхдержавы искусственного интеллекта [Китай, Кремниевая долина и новый мировой порядок] [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 2015 году команда Microsoft Research Asia одержала победу на всемирном конкурсе по распознаванию изображений ImageNet. Алгоритм, обеспечивший команде превосходство, назывался ResNet: он смог идентифицировать и классифицировать изображения со 100 000 фотографий в 1000 различных категорий, доля ошибок составляла всего 3,5 % [46] Вероятно, ошибка автора. В этом соревновании используется более мягкая метрика – top5 error rate. Если вычисленная вероятность правильного класса входит в первую пятерку вероятностей из всех 1000 классов, ответ считается правильным. Иначе говоря, если алгоритм утверждает, что на картинке ёж с вероятностью 40 % и сова с вероятностью 31 %, то ответ будет засчитан, даже если на картинке сова. Прим. науч. ред.
. Два года спустя, когда специалисты DeepMind Google построили AlphaGo Zero – обновленную версию AlphaGo, обучающуюся только на играх с самой собой, они использовали ResNet в качестве одного из своих основных технологических строительных блоков. Китайские исследователи, создавшие ResNet, оставались в Microsoft недолго. Из четырех авторов разработки ResNet один присоединился к исследовательской группе Яна Лекуна в Facebook, а остальные трое основали стартапы в области ИИ в Китае или присоединились к чужим. Один из таких стартапов – Face++ – быстро стал мировым лидером в области распознавания лиц и изображений. В соревновании по распознаванию изображений COCO 2017 команда Face++ заняла первые места в трех из четырех важнейших категорий, опередив лучшие группы специалистов из Google, Microsoft и Facebook.
Некоторым наблюдателям на Западе эти научные достижения кажутся идущими вразрез с глубоко укоренившимися представлениями о том, как политическая система влияет на национальную науку. Не должны ли китайские органы контроля над интернет-технологиями сдерживать рвение китайских исследователей? Система государственного регулирования в Китае часто подвергается критике – если говорить об общественных дискуссиях и социальных исследованиях, ее влияние и правда весьма ощутимо. Но в области точных наук контроль государства куда мягче. Искусственный интеллект не затрагивает чувствительные политические вопросы, и никто не ограничивает китайских ученых в их работе по созданию передовых алгоритмов и программных приложений. И в этом можно не сомневаться. В 2017 году, на конференции по искусственному интеллекту и всемирной безопасности, бывший генеральный директор Google Эрик Шмидт предостерег участников от снисходительного отношения к возможностям Китая в области ИИ. Он предсказал, что через пять лет Китай в этом отношении способен догнать США. В своей оценке Шмидт был откровенен и весьма прямолинеен: «Поверьте мне: китайцы очень хороши… И если вы думаете, что каким-то чудом их государственная система или система образования перестанут порождать тот тип людей, который я имею в виду, то вы глубоко заблуждаетесь» [47] Шеад С. Эрик Шмидт об ИИ: «Поверьте мне: китайцы очень хороши» // Business Insider. URL: http://www.businessinsider.com/eric-schmidt-on-artificial-intelligencechina-2017-11 (1 ноября 2017 года).
.
Семь гигантов и следующий прорыв
Но в то время как глобальное исследовательское сообщество ИИ расцвело, превратившись в гибкую и открытую экосистему, один ее компонент остался довольно закрытым: это крупные корпоративные исследовательские лаборатории. Академические исследователи могут спешить поделиться своей работой со всем миром, но публичные технологические компании должны в первую очередь максимизировать прибыль своих акционеров. Это обычно ведет к тому, что такие компании меньше внимания уделяют публикациям и больше – созданию запатентованных технологий.
Из сотен компаний, вкладывающих ресурсы в исследования ИИ, вернемся к семи, которые стали новыми гигантами в этой области: Google, Facebook, Amazon, Microsoft, Baidu, Alibaba и Tencent. По сути, эти семь гигантов превратились в то, чем были 50 лет назад сами нации, – то есть большие и относительно закрытые системы, задействующие таланты своих сотрудников и ресурсы, чтобы создавать технологии «для внутреннего употребления». Но результаты корпоративных исследований все же невозможно запечатать наглухо: участники одних групп уходят, чтобы основать свои собственные стартапы в области ИИ, а некоторые другие группы, такие как Microsoft Research, Facebook AI Research и DeepMind, по-прежнему публикуют статьи о своих наиболее значимых успехах. Но все же, если в одной из этих компаний будет сделано уникальное открытие, то такую коммерческую тайну, способную принести компании огромные прибыли, будут всеми силами держать за семью замками и попытаются извлечь из нее максимально возможную выгоду до того, как она станет широко известна.
Новаторские открытия, совершаемые в замкнутых системах, представляют собой наибольшую опасность для экосистемы ИИ в мире. Их недоступность угрожает загнать Китай в тупик на его пути к глобальному лидерству в области ИИ. На сегодняшний день Китай уже опережает Соединенные Штаты в плане роста предпринимательства, накопления данных и государственной поддержки и быстро догоняет их в плане опыта и знаний. Если в течение ближайших лет технологический статус-кво сохранится, множество китайских стартапов ИИ в разных отраслях начнут стремительно набирать мощь. Благодаря глубокому обучению и другим технологиям машинного обучения они захватят десятки секторов экономики и будут пожинать плоды ее преобразования. Но если следующий масштабный прорыв произойдет в ближайшее время и в герметично закупоренной корпоративной среде, все достигнутое окажется под вопросом. Это может дать одной компании безоговорочное преимущество перед другими семью гигантами и вернуть нас к эпохе открытий, когда важность уникальных знаний вновь сместит баланс сил в пользу Соединенных Штатов.
Здесь следует пояснить, что, на мой взгляд, шансы такого прорыва внутри одного из корпоративных гигантов в ближайшие годы будут невелики. Глубокое обучение стало самым большим шагом вперед за последние 50 лет, а достижения такого масштаба редко появляются чаще одного раза в несколько десятилетий. Даже если следующий прорыв и произойдет, то, скорее всего, это случится в открытой исследовательской среде. Сейчас корпоративные гиганты вкладывают беспрецедентные ресурсы в глубокое обучение. Это говорит о большом объеме работ по тонкой настройке его алгоритмов и небольшой доле исследований, направленных на поиск инновационного решения, которое могло бы привести к смене парадигмы. Чистая наука оказывается не в состоянии конкурировать с практическим применением глубокого обучения в промышленности, так как для этого нужны большие объемы данных и соответствующие вычислительные мощности. Поэтому многие академические исследователи поддерживают призыв Джеффри Хинтона двигаться дальше и сосредоточиться на изобретении «следующего уровня глубокого обучения» – принципиально нового подхода к проблемам ИИ, способного изменить правила игры. Именно такие исследования, вероятнее всего, приведут к следующему эпохальному открытию, результаты которого обязательно будут обнародованы, чтобы весь мир мог ими воспользоваться.
Читать дальшеИнтервал:
Закладка: