Искусственный интеллект
- Название:Искусственный интеллект
- Автор:
- Жанр:
- Издательство:ИИнтелл
- Год:2006
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Искусственный интеллект краткое содержание
Авторы статей - философы, психологи, специалисты в области компьютерных наук, логики, математики, биологии, нейрофизиологии, лингвистики.
Искусственный интеллект - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Специфика возникновения в квантовых системах новой информации (в виде информационных скачков) становится доступной пониманию, когда уясняется более общий вопрос о том, как с квантовой теорией (с квантовой механикой) совмещаются элементы классической (макроскопической) картины мира, которые и позволяют снимать информацию, вырабатываемую квантовыми системами. Физики согласны в том, что проникновение классической картины мира в изображение квантовых явлений обусловлено феноменом декогеренции, описываемой как переход когерентной суперпозиции в смесь, из которой затем выбираются доступные прямому наблюдению фрагменты реальности. Феномен декогеренции обязан акту необратимости, которая выглядит поначалу довольно странной на фоне теории, построенной на обратимом уравнении Шредингсра. Однако эта странность отпадает, как только мы начинаем смотреть на сам обратимый процесс по-новому, нежели это принято, т.е. рассматривать его как процесс, в котором энтропийные отклонения в ту или иную сторону (увеличение энтропии или уменьшение её) взаимно уравновешиваются.
При таком подходе к изучению явлений микромира становится понятно, что в когерентных, или волновых, процессах электроны ведут себя как безэнтропийные, т.е. нейтральные в отношении энтропии и эктропии, объекты. Но электрон имеет двойственную природу в отношении этих параметров и проявляет себя либо как частица энтропийная, либо как эктропийная, в зависимости от системы, в которой он регистрируется. В эксперименте Эйнштейна, Подольского, Розена описание физической реальности в терминах квантовой механики действительно страдает неполнотой, ибо в нем (эксперименте) не указывается, в какой системе проводится измерение одного из двух сцепленных электронов. Второй электрон реагирует на акт измерения, проводимого над первым электроном, но в приобретенном им состоянии отсутствует указание на характер необратимого процесса, в результате которого он оказался в данном состоянии.
Квантово-информационный подход к изучению явлений микромира позволяет рассматривать электрон в качестве носителя информационного сигнала. А зктропийные свойства электронов помогают понять, как осуществляется мгновенная связь между двумя сцепленными частицами. Похоже, что оба элемента пары должны одновременно проявлять свои энтропийные или эктропийные характеристики. Существо работы квантового компьютера обычно демонстрируют на поведении такой пары. Если каждая из двух ее частиц может находиться в состоянии «О» и «1», то ее можно отождествить с двухкубитовым регистром, в котором реализуются комбинации 00, 01, 10, 11. Регистр называется кубитовым, поскольку его работа протекает в режиме унитарной эволюции, которую претерпевает квантовая суперпозиция.
До тех пор, пока выдерживается когерентность данной суперпозиции, сохраняется и связь сцепления между частицами. А результат работы квантового регистра выдается в виде одного члена суперпозиции. Элементы новизны, предлагаемые в нашем обзоре квантово-компьютерных технологий, заключаются в том, что необратимый процесс, который сопровождает акт выбора одного из членов вышеуказанной суперпозиции (измерение в квантовом компьютере), вовсе не обязан быть энтропийным. Обратимый процесс унитарной эволюции, описываемой уравнением Шредингера, и такой же обратимый процесс обработки информации в квантовом компьютере образуют ту равновесную линию движения, от которой становятся вполне реальными отклонения от заданного уровня энтропии в сторону ее уменьшения. Такие антиэнтропийные отклонения сопровождаются внутренним приростом информации в системе. Видимо, так работает и мозг человека. Ведь прирост логико-математической информации, полученной в гёделевой формуле, нельзя рассматривать иначе, как информацию, полученную из внутренних источников. Но она не может быть выработана с помощью тех методов вычислений, что используются в классическом компьютере.
Обратный ход мысли, когда мы начинаем рассматривать процесс унитарных преобразований в квантовой теории как процесс вычислительный, приводит к тем же самым выводам. В самом деле, такой процесс поддаётся экспериментальной проверке только в том случае, если он заканчивается определённым результатом. Но полученный таким образом извне результат воспринимается субъектом и вписывается в его сознание. Самое существенное здесь состоит в том, что внешний результат усваивается сознанием путём встраивания его в ряд результатов внутренних квантово-информационных вычислений, т.е. вычислений, производимых самим мозгом. Поскольку ставятся в один ряд внешнее и внутреннее восприятия, они уподобляются друг другу. Это вполне естественно, но, к сожалению, их часто смешивают между собой.
Так И. [Дж.] фон Нейман сделал следующее заявление с целью объяснения феномена редукции волновой функции: «... неотъемлемо всецело верно, что измерение (квантовомеханическое. - Л.А.) или родственный процесс субъективного восприятия является новой сущностью по отношению к физическому окружению и не сводится к последнему. Действительно, субъективное восприятие заводит нас в интеллектуальную внутреннюю жизнь индивида, которая сверхчувственна (extra-observational) по самой своей природе....
Тем не менее, в рамках фундаментальной научной точки зрения -так называемого принципа психофизического параллелизма - должно быть возможно описать экстрафизический процесс субъективного восприятия, как если бы это имело место в действительности в физическом мире...» [9; 407].
Как понимать «экстрафизический процесс субъективного восприятия»? Фон Нейман, конечно же, имеет в виду внешнее восприятие. Но он ошибочно отождествляет его с внутреннем восприятием, поскольку в обоих случаях для получения информации необходимо располагать унитарно-вычислительным процессом и прерывать его в какой-то момент времени, чтобы фиксировать те результаты, к которым он приводит.
На факт наличия антиэнтропийных необратимых процессов в церебральной системе человека обращал внимание Н.Бор. Касаясь таких категорий сознания, как память, Бор писал: «Прежде всего самое слово сознание относится к опыту, который может удержаться в памяти; это обстоятельство показывает нам сравнение между сознательным опытом и физическими наблюдениями». И далее: «С биологической точки зрения мы можем толковать признаки психических явлений, только считая, что всякий сознательный опыт соответствует остаточному следу в организме, сводящемуся к остающейся в нервной системе необратимой записи исхода процесса» [10; 108]. Бор констатирует наличие необратимых записей в мозге, подразумевая, конечно, необратимость антиэнтропийную. Иначе его высказывания были бы абсурдными, иначе мы должны были бы признать, что структурирование, упорядочивание, обогащение памяти ведёт к увеличению энтропийного хаоса.
Читать дальшеИнтервал:
Закладка: