Искусственный интеллект
- Название:Искусственный интеллект
- Автор:
- Жанр:
- Издательство:ИИнтелл
- Год:2006
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Искусственный интеллект краткое содержание
Авторы статей - философы, психологи, специалисты в области компьютерных наук, логики, математики, биологии, нейрофизиологии, лингвистики.
Искусственный интеллект - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Процитируем его высказывания. Он, в частности, писал: «Классические уравнения Максвелла представляют собой обычную теорию поля в четырёхмерном пространстве х, у, z, t. В первоначальной концепции де Бройля казалось естественным, что «волны материи» также должны подчиняться четырёхмерной теории поля, чётким подтверждением которой считались интерференционные эксперименты простейшего типа. Но мы лишились (быть может, не навсегда?!) веры в возможность такой теории поля, после того как Шредингер для описания взаимодействия п электронов должен был использовать обобщение Ч'-функции на Зп-мерное «конфигурационное» пространство, причём все попытки сохранить четырёхмерный континуум потерпели неудачу» [3;173]. Далее Эренфест разъясняет, что наличие дальнодейсгвующей связи, скажем, между двумя электронами в конфигурационном пространстве не зависит от расстояния между ними. Достаточно зафиксировать в каком-то месте пространства один электрон, как мы получим информацию, заключённую в волновой функции, о месте расположения другого электрона. Такая связь, говорим мы теперь, реализуется посредством той среды, в которой нет поляризации на пространство (протяжённость) и время (длительность).
Итак, когда строится и используется в квантовой теории конфигурационное пространство, частицы вещества не только растворяются в этом пространстве, но ещё и «кооптируются» в физический вакуум. Через вакуум осуществляется их дальнодействие, проявляющееся при регистрации. Мнимая единица служит формальным признаком участия физического вакуума в таких процессах. Но за мнимой единицей или, вообще говоря, за комплексным числом следует его комплексно-сопряжённый двойник, волновой функции соответствует комплексно-сопряжённая функция. В релятивистской квантовой теории комплексно-сопряжённые функции описывают два разных состояния (движения) частиц. О том, чем они принципиально отличаются друг от друга, мы расскажем далее. Сейчас только заметим, что с конфигурационным пространством связан целостный комплекс физических величин, так что его преобразование, отвечающее переходу от волновой функции к функции, с ней комплексно-сопряжённой, приводит к преобразованию таких попарно взятых величин, как энергия и время, импульс и координата. Двум комплексно-сопряжённым функциям соответствуют две разные компоненты времени. Одну из них называют энтропийной, другую - антиэнтропийной, или эктро-пийной. Результат квантово-вычислительных процессов зависит от того, в какой системе они протекают, с каким из двух противоположных типов конфигурационного пространства приходится иметь дело.
Знакомство со спецификой конфигурационного пространства позволяет уточнить статус подвижной границы между вещью и пространством-временем в рамках квантовой теории. Здесь эта граница перемещается в цепочке «субъект - вещь (квантовый объект) - конфигурационное пространство». Она поэтому приобретает чётко выраженный гносеологический характер. Физики называют её подвижной гранью , которая в процессе квантово-механического измерения отделяет либо объект (микросистему) от прибора, либо прибор от (сознания) наблюдателя. В общем, как неоднократно разъяснял
В. Паули, само сознание наблюдателя «требует, чтобы между субъектом и объектом можно было провести грань, существование которой диктуется логической необходимостью, тогда как положение её остаётся до известной степени произвольным» [4;63]. (Правильнее было бы говорить не о логической, а о гносеологической необходимости).
§3. Об идейных истоках концепции квантово-компьютерных
Концепция квантово-компьютерных вычислений является частью физики квантовой информации. Для её изложения требуется язык теории квант, который дополняется определённым арсеналом терминов и понятий, необходимых для описания работы квантового вычислительного средства. Укажем на узловые моменты квантово-компьютерной идеологии.
Исходное понятие - квантовое состояние движения с его отличием от состояния движения (покоя) в классической физике. Как в классической физике, так и в квантовой механике, состояние движения частицы изменяется под воздействием силового фактора, или фактора силового поля. В классике фактор этот представлен в виде функции Гамильтона (или функции Лагранжа). В квантовой механике функция Гамильтона заменяется оператором Гамильтона (гамильтонианом), который действует на волновую функцию. Способ изменения волновой функции во времени описывается уравнением Шредингера.
Говорят, что частица, состояние которой находится под влиянием силового фактора, представленного гамильтонианом, взаимодействует с соответствующим источником силового поля. При этом может случиться так, что источником силового поля выступает частица или античастица того же сорта, что и частица, находящаяся под наблюдением. Тогда у двух таких частиц (их может быть больше двух) появляется общность, позволяющая описывать их единой волновой функцией, т.е. объединять в одной функции состояния обеих частиц. Такие квантовые состояния Э.Шредингер назвал в своё время скрещенными (от нем. Verschrankung - скрещение) [5]. К сожалению, в русском языке стали использовать менее удобную терминологию, в которой фигурируют «перепутанные состояния». Эти издержки перевода на русский язык английского Entanglement, что буквально означает запутанность, затруднительное положение, внесли немалую путаницу в умы физиков. Более удачным мы считаем термин «сцепленные состояния», который фигурирует в русском переводе книги
Э. Стина [6]. Им мы и будем пользоваться в дальнейшем.
«Сцепленные состояния» - ключевой термин в физике квантовой информации. Такие состояния фигурируют в известном мысленном эксперименте, сформулированном Эйнштейном, Подольским, Розеном в 1935 году. Этот эксперимент рассматривается как выражение своеобразного парадокса, так как в нём обнаруживается, при строгом следовании законам квантовой теории, как раз наличие нелокального влияния одной части сцепленного состояния на другую. Такое влияние проявляется в процессе измерения. Здесь, однако, несколько иначе высвечивается феномен нелокальное™, о котором шла речь в предыдущем параграфе. Но понятием сцепленных состояний удобно пользоваться, поскольку оно позволяет уже непосредственно подключиться к проблематике квантово-компьютерных вычислений.
Квантовый компьютер реализуется посредством фиксированного множества сцепленных частиц, каждая из которых может находиться только в двух состояниях, символизируемых обычно посредством нуля и единицы т.е. тех цифровых элементов, которые используются для двоичного выражения чисел. Количество сцепленных частиц называют обычно квантовым регистром. Каждая ячейка регистра отождествляется с частицей. Регистр квантового компьютера отличается от регистра компьютера классического тем, что в нём фигурирует одновременно суперпозиция всех возможных состояний, реализуемых квантовым регистром, и только при измерении фиксируется в качестве результата наблюдения одно из них. Такая суперпозиция может выполнять вычислительную задачу только при условии, что она подвергается унитарным преобразованиям, т.е. тем преобразованиям, что имеют место при унитарной эволюции системы. (Напомним, что условие унитарности состоит в равенстве единице суммы всех тех вероятностей, которые соотносятся посредством амплитуд вероятности с каждым членом, входящим в квантовую суперпозицию).
Читать дальшеИнтервал:
Закладка: