Михаил Никитин - Происхождение жизни. От туманности до клетки

Тут можно читать онлайн Михаил Никитин - Происхождение жизни. От туманности до клетки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Альпина, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Михаил Никитин - Происхождение жизни. От туманности до клетки краткое содержание

Происхождение жизни. От туманности до клетки - описание и краткое содержание, автор Михаил Никитин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Происхождение жизни. От туманности до клетки - читать онлайн бесплатно ознакомительный отрывок

Происхождение жизни. От туманности до клетки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Михаил Никитин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Из кислот цикла Кребса строятся три основных класса веществ в клетках – сахара (из пировиноградной кислоты), жирные кислоты (из ацетил-КоА) и аминокислоты (из щавелевоуксусной, альфа-кетоглутаровой и пировиноградной кислот). Пути распада этих веществ для получения энергии – гликолиз, бета-окисление жирных кислот и дезаминирование аминокислот – приводят в конечном итоге к циклу Кребса (рис. 11.1).

Пути обмена веществ имеют модульную структуру и соединяются друг с другом через немногие универсальные промежуточные продукты. Например, обмен сахаров подключается к циклу Кребса через пировиноградную кислоту. Кроме гликолиза (распад глюкозы до пировиноградной кислоты) есть еще глюконеогенез – обратный путь от пировиноградной кислоты к глюкозе с затратами энергии. Благодаря глюконеогенезу, который происходит в основном в печени, молочная кислота в нашем организме может быть переработана обратно в глюкозу.

Кроме шестиуглеродных (глюкоза, фруктоза) и трехуглеродных сахаров (глицеральдегид, диоксиацетон) клетки умеют производить и расщеплять пятиуглеродные сахара, такие как рибоза, необходимая для построения ДНК и РНК. Для этого используется пентозофосфатный цикл – это сеть взаимопревращений всех классов сахаров, включая семиуглеродные (седогептулоза), шестиуглеродные, пятиуглеродные (рибоза, рибулоза и ксилулоза), четырехуглеродные (эритроза), и трехуглеродные (глицеральдегид). Цикл может работать в разных направлениях, например, производя из глюкозы рибозу для РНК и эритрозу для синтеза некоторых витаминов или, наоборот, превращая полученную с пищей рибозу в глицеральдегид для сжигания в цикле Кребса.

Клетки человека способны строить из веществ промежуточного метаболизма не все им необходимое. Они могут произвести основные сахара, такие как глюкоза, галактоза и рибоза, половину набора аминокислот, нуклеотиды и жиры. Более сложные аминокислоты (такие как лизин, метионин и триптофан) и витамины должны поступать с пищей. Другие организмы более самостоятельны. Например, кишечная палочка может построить все аминокислоты и витамины, имея в своем распоряжении только глюкозу и минеральный источник азота (нитратные или аммонийные соли). Но и человек, и кишечная палочка нуждаются в готовой органике и в конечном итоге разрушают ее. Для существования биосферы необходимы автотрофные организмы, такие как растения, которые могут производить все необходимые органические вещества из углекислого газа и азота (в форме аммиака или нитратов).

Включение углекислого газа в обмен веществ Существует несколько биохимических - фото 77

Включение углекислого газа в обмен веществ

Существует несколько биохимических путей включения СО 2в метаболизм (это называют фиксацией СО 2). У растений фиксация СО 2происходит в цикле Кальвина. Когда школьникам говорят, что «растения поглощают углекислый газ и синтезируют глюкозу», речь идет именно о цикле Кальвина, но это сильно упрощенная правда. Строго говоря, в цикле Кальвина образуется трехуглеродный фосфоглицериновый альдегид, а затем из него в несколько этапов получается глюкоза (рис. 11.2). На первый взгляд, схема реакций цикла Кальвина очень сложна, однако большинство этих реакций – такие же перестройки сахаров, как и в пентозофосфатном цикле. Все они происходят по одному механизму альдольной конденсации, как и реакция Бутлерова, и катализируются родственными ферментами. Для фиксации СО 2в цикле Кальвина к пентозофосфатному циклу надо добавить только три реакции:

• перенос фосфатной группы с АТФ на рибулозо-5-фосфат с образованием рибулозо-1–5-бифосфата;

• присоединение СО 2к рибулозо-бифосфату с образованием двух молекул фосфоглицериновой кислоты;

• восстановление фосфоглицериновой кислоты до фосфоглицеринового альдегида.

Последняя реакция из этих трех кстати уже есть в соседнем пути метаболизма - фото 78

Последняя реакция из этих трех, кстати, уже есть в соседнем пути метаболизма – глюконеогенезе.

Все остальные реакции в этой устрашающей схеме нужны только для того, чтобы из части фосфоглицеринового альдегида получить обратно рибулозо-1–5-бифосфат для следующего оборота цикла.

Микроорганизмы используют другие пути фиксации СО 2. Например, у ацетогенов и метаногенов есть так называемый восстановительный ацетил-КоА-путь. Эти организмы получают энергию за счет восстановления СО 2водородом до метана или до уксусной кислоты. И этот путь восстановления СО 2в органику у них во многом пересекается с путем восстановления СО 2для получения энергии.

Кофермент А участвует во многих важных биохимических процессах (в том числе и в цикле Кребса, и в цикле Кальвина). Его задача – переносить остатки органических кислот на другие молекулы, например, ацетат (в главе 10 нам уже попадалось наименование этого соединения – «ацетил-КоА»). В восстановительном ацетил-КоА-пути одна молекула углекислого газа восстанавливается до муравьиной кислоты, связывается с коферментом тетрагидрофолатом (производное витамина В 9) и восстанавливается далее до метильной группы (CH 3). Другая молекула СО 2восстанавливается другим ферментом до угарного газа (СО) и присоединяется к метильной группе и коферменту А с образованием ацетил-КоА (рис. 11.3). Этот ацетил-КоА через цикл Кребса и другие метаболические пути становится источником углерода для всех веществ в клетке.

Цикл Кальвина и восстановительный ацетилКоАпуть представляют собой достаточно - фото 79

Цикл Кальвина и восстановительный ацетил-КоА-путь представляют собой достаточно независимые «модули», которые подключаются к остальному метаболизму через одну промежуточную ступень, которую представляет либо глицеральдегид-фосфат, либо ацетил-КоА (рис. 11.4).

Кроме этих путей известен вариант фиксации СО 2 который вписан в самый центр - фото 80

Кроме этих путей известен вариант фиксации СО 2, который вписан в самый центр обмена веществ у некоторых микробов. Как мы помним, в цикле Кребса происходит распад уксусной кислоты до СО 2и водорода. Оказывается, есть организмы, которые проводят реакции цикла Кребса в обратную сторону, фиксируя с его помощью углекислый газ (рис. 11.5). Это зеленые серобактерии и некоторые другие фотосинтезирующие и хемосинтезирующие бактерии. Поскольку обычный цикл Кребса идет с выделением энергии, для проведения его реакций в обратную сторону необходимо затрачивать энергию в виде АТФ.

Существует гипотеза согласно которой восстановительный цикл Кребса шел при - фото 81

Существует гипотеза, согласно которой восстановительный цикл Кребса шел при помощи минеральных катализаторов еще до появления РНК и белков и, с побочными реакциями, создал аминокислоты и нуклеотиды из СО 2(Smith and Morowitz, 2004). Она основана на следующих фактах:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Михаил Никитин читать все книги автора по порядку

Михаил Никитин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Происхождение жизни. От туманности до клетки отзывы


Отзывы читателей о книге Происхождение жизни. От туманности до клетки, автор: Михаил Никитин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x