Знание-сила, 2014 №07
- Название:Знание-сила, 2014 №07
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Знание-сила, 2014 №07 краткое содержание
Знание-сила, 2014 №07 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В пору экономических кризисов люди всеми способами пытаются спасти свои сбережения — например, скупают золото. Любопытно, что этот металл, как убедились астрономы, тоже рождается в пору кризисов, но не земных, а небесных. Компьютерные модели, представленные астрофизиками, свидетельствуют, что идеальные условия для синтеза золота возникают при катастрофических событиях в мире звезд. В это время вспыхивают термоядерные реакции, которые порождают в большом количестве тяжелые элементы — в том числе вожделенный металл.
Как известно, многие химические элементы образуются при слиянии более легких атомных ядер. Зачем далеко ходить за примерами? В недрах нашего Солнца при слиянии ядер водорода возникают ядра гелия. При этом выделяются громадные количества энергии. Подобные процессы протекают и в недрах других звезд — с той лишь разницей, что в глубине гигантских звезд рождаются более тяжелые элементы, включая железо. Происходит, правда, это по другой схеме — путем захвата нейтронов у менее массивных атомов. Есть две основные разновидности этого захвата. Одна из них — так называемый «быстрый процесс», r-процесс (от английского слова rapid) — до сих пор вызывала немало вопросов у астрофизиков, поскольку подобный процесс протекает, лишь когда плотность нейтронов очень высока и есть возможность быстрого захвата большого их количества. Результатом этой череды событий становится синтез самых тяжелых элементов, в том числе тория, урана, платины и золота. Но в недрах каких небесных объектов это может происходить?
Долгое время астрофизики предполагали, что золото рождается при взрывах сверхновых звезд. Однако этот сценарий не мог объяснить характер распределения тяжелых элементов во Вселенной. Другое дело — столкновения нейтронных звезд. Прежде чем описать подобное событие, поговорим немного об этих необычных объектах.
Путешествие вглубь нейтронных звезд
Возникают они на месте взорвавшихся звезд (если те не превратились в черные дыры). Нейтронные звезды — поистине рай небесный для физиков. Ни в одной лаборатории мира нельзя воссоздать условия, царящие здесь.
Прежде всего, поражает их плотность. Вещество в них сжато сильнее, чем в атомном ядре. Так что нейтронная звезда диаметром около 20 километров оказывается в 1,4–3 раза массивнее Солнца. Это означает, что чайная ложка звездной пыли будет весить около миллиарда тонн.
Сила притяжения на поверхности нейтронной звезды так велика, что та представляет собой идеальный шар. Если здесь и можно найти какие-то неровности, то их высота — не более миллиметра. Толщина твердой коры, по результатам наблюдений, не превышает полутора километров. Верхний ее слой состоит из железа, погруженного в своего рода океан из электронов.
Слой железа очень тонок. Всего в нескольких метрах от поверхности нейтронной звезды ее плотность резко возрастает. Там теснятся экзотические атомные ядра, которые на Земле можно получить разве что на новейших ускорителях. Пример тому — такой элемент, как никель-78. Если в стабильном атоме никеля его ядро содержит от 58 до 64 протонов и нейтронов, то радиоактивный никель-78 содержит, по меньшей мере, на 14 нейтронов больше. Период полураспада подобного элемента в лабораторных условиях составляет 110 миллисекунд. А вот в коре нейтронной звезды ввиду царящего здесь громадного давления атомные ядра никеля-78 пребывают в стабильном состоянии.
Но продолжим путешествие вглубь нейтронной звезды. Когда плотность в ее коре достигает 400 тысяч тонн на кубический сантиметр, условия резко меняются. Теперь для нейтронов, с энергетической точки зрения, выгоднее находиться вне атомных ядер. Они «просачиваются» сквозь ядра и образуют зоны, состоящие из так называемой «нейтронной жидкости».
Наконец, когда плотность в недрах звезды достигает 150 миллионов тонн на кубический сантиметр, кора нейтронной звезды заканчивается. Все атомные ядра распадаются на свои составные части. В этом месиве из элементарных частиц нейтроны находятся в явном изобилии. Поэтому, когда звезда остынет, в ее недрах может наблюдаться такое явление, как нейтронная сверхпроводимость. Этот феномен аналогичен, например, низкотемпературной сверхпроводимости гелия. Для него характерно полное отсутствие потерь энергии на элекрическое сопротивление.
Итак, по своему строению нейтронная звезда напоминает, скорее, планету земного типа, нежели звезду. Она покрыта твердой корой, под которой простирается обширная жидкая зона. Впрочем, четкой границы между этими двумя областями нет. Мощное магнитное поле связывает их.
На этом аналогии между нейтронной звездой и планетами заканчиваются, поскольку астрономы мало что знают о том, что происходит в ее недрах на глубине всего в несколько километров, когда плотность превысит в 10 раз плотность атомного ядра. Ведь даже на современных ускорителях при столкновении атомных ядер не удается достичь подобной плотности. По некоторым гипотезам, там пребывают в свободном состоянии кварки. А, может быть, там находятся какие-то неизвестные пока науке элементарные частицы?
По оценкам астрономов, только в нашей Галактике расположено около миллиарда нейтронных звезд, но в большинстве своем они еще не обнаружены (подробнее об этих звездах, именуемых также «пульсарами», см. «3-С», 9/05).
Пульсары гибнут за металл
Как показывают модельные расчеты, при столкновении двух нейтронных звезд в окружающее пространство мгновенно — за тысячную долю секунды! — выбрасывается большое количество необычайно раскаленного звездного вещества.
Когда плазма остывает до температуры менее 10 миллиардов градусов, в ней начинаются цепные реакции — тот самый быстрый захват нейтронов. Это приводит к образованию тяжелых элементов.
Ученые соотнесли картину распределения тяжелых элементов, полученную путем моделирования на компьютере, и оценили предполагаемое число столкновений нейтронных звезд. Соотнесли и убедились, что именно эти события, очевидно, и породили большую часть золота, платины, урана, содержащихся во Вселенной. Почти все то золото, ради которого люди гибли веками, — это золото звезд нейтронных.
Когда же оно возникло? Как попало на нашу планету?
Время синтеза золотых запасов Земли можно установить только приблизительно. Например, предполагается, что возраст этого золота — не более 10 миллиардов лет, ведь именно таков возраст Млечного Пути. Незримые «космические фабрики» по производству драгметалла открылись в нашей Галактике лишь после того, как она сформировалась. После того, как звезды в ней старились, взрывались, превращались в черные дыры или нейтронные звезды, а те время от времени сталкивались друг с другом. Под громовой аккомпанемент этой «космической алхимии» различные вещества, содержавшиеся в недрах нейтронных звезд, словно по мановению волшебной палочки, превращались в золото. Так что, возраст земных богатств (хотя бы некоторых) — почти 10 миллиардов лет. Они вдвое старше Земли.
Читать дальшеИнтервал:
Закладка: